
International Journal of Electronic Commerce Studies

Vol.3, No.2, pp.211-228, 2012

doi: 10.7903/ijecs.1092

PARALLEL IMAGE DATABASE PROCESSING
WITH MAPREDUCE AND PERFORMANCE

EVALUATION IN PSEUDO DISTRIBUTED MODE

Muneto Yamamoto
Kyushu University

Motooka 744, Nishi-Ku, Fukuoka-Shi, 819-0395, Japan
mnt.ymmt@gmail.com

Kunihiko Kaneko
Kyushu University

Motooka 744, Nishi-Ku, Fukuoka-Shi, 819-0395, Japan
kaneko@ait.kyushu-u.ac.jp

ABSTRACT

With recent improvements in camera performance and the spread of

low-priced and lightweight video cameras, a large amount of video data is

generated, and stored in database form. At the same time, there are limits

on what can be done to improve the performance of single computers to

make them able to process large-scale information, such as in video

analysis. Therefore, an important research topic is how to perform parallel

distributed processing of a video database by using the computational

resource in a cloud environment. At present, the Apache Hadoop

distribution for open-source cloud computing is available from

MapReduce
1
. In the present study, we report our results on an evaluation

of performance, which remains a problem for video processing in

distributed environments, and on parallel experiments using MapReduce

on Hadoop
2
.

Keywords: Hadoop, MapReduce, Image Processing, Sequential Image

Database

1. INTRODUCTION

With the spread of cloud computing and network techniques and

equipment in recent years, a large amount of data collected in a variety of

social situations have been accumulated, and so the need for analysis

mailto:mnt.ymmt@gmail.com

International Journal of Electronic Commerce Studies

212

techniques to take advantage of useful information that can be extracted

from such data sets is increasing. This is also true for video data, in which

images are sequential and the data includes the associated time and frame

information of each frame. Today, because video cameras are set up to

perform surveillance of moving objects such as pedestrians and vehicles, a

large amount of video data is generated, and stored in database form. To

improve these video database systems, which hold a large amount of video

and related data, parallel processing using CPUs and disks at multiple sites

is an important area of research.

Also, when considering operations such as search and other types of

analysis of video images recorded by video camera and stored in a

database, there are limits on what can be done to improve the performance

of single computers to make them able to process large-scale information.

Therefore, the advantages of parallel distributed processing of a video

database by using the computational resources of a cloud computing

environment should be considered. In addition, if computational resources

can be secured easily and relatively inexpensively, then cloud computing

is suitable for handling large video databases at low cost. Hadoop, as a

mechanism for processing large numbers of databases by parallel and

distributed computing has been recognized as promising. Nowadays, for

reasons such as ease of programming, by using the function MapReduce

on the Hadoop system, open-source cloud-based systems that can process

data across multiple machines in a distributed environment have been

studied for their application to various database operations. In fact,

Hadoop is in use all over the world
3
. Studies using Hadoop have been

performed to treat one file as a text data file or multiple files as a single

file unit, such as for the analysis of large volumes of DNA sequence data,

converting the data of a large number of still images to PDF format, and

carrying out feature selection/extraction in astronomy
4
. These examples

demonstrate the usefulness of this system, which is due to its having the

ability to run multiple processes in parallel for load balancing and task

management.

The rest of this paper is organized as follows. Section 2 provides the

background knowledge related to this work, including an overview of the

MapReduce programming model and why MapReduce is deployed in a

distributed environment. In section 3, we discuss the architecture of our

system and problems arising when processing video databases by using

MapReduce on Hadoop in a distributed environment. Then, we give an

overview on our experimental methodology and present the results of our

experiments in section 4. Finally, we conclude the paper and propose

future work in section 5.

Muneto Yamamoto and Kunihiko Kaneko 213

2. HADOOP STREAMING FOR DATABSE
PROCESSING

2.1 Parallel and Distributed Processing on Hadoop

As the structure of the system, Hadoop consists of two components,

the Hadoop Distributed File System (HDFS) and MapReduce, performing

distributed processing by single-master and multiple-slave servers. There

are two elements of MapReduce, namely JobTracker and TaskTracker,

and two elements of HDFS, namely DataNode and NameNode. In Figure

1, the configuration of these elements of MapReduce and HDFS on

Hadoop are indicated. There is also a mechanism that checks the metadata

for NameNode.

(A) JobTracker

JobTracker manages cluster resources and job scheduling to and

monitoring on separate components.

Figure 1. Structure with elements of MapReduce and HDFS

(B) TaskTracker

TaskTracker is a slave node daemon in the cluster that accepts tasks

and returns the results after executing tasks received by JobTracker.

(C) NameNode

An HDFS cluster consists of a single NameNode, a master server that

manages the file system namespace and regulates access to files by clients.

NameNode executes file system name space operations, such as opening,

closing, and renaming files and directories. It also determines the mapping

of blocks to DataNodes.

International Journal of Electronic Commerce Studies

214

(D) DataNode

The cluster also has a number of DataNodes, usually one per node in

the cluster. DataNodes manage the storage that is attached to the nodes on

which they run. DataNodes also perform block creation, deletion, and

replication in response to direction from NameNode.

(E) SecondaryNameNode

SecondaryNameNode is a helper to the primary NameNode.

Secondary is responsible for supporting periodic checkpoints of the HDFS

metadata.

2.2 Hadoop Distributed File System (HDFS)

HDFS is designed to reliably store very large files across machines in

a large cluster. It is inspired by the Google File System. HDFS is

composed of NameNode and DataNode. HDFS stores each file as a

sequence of blocks (currently 64 MB by default) with all blocks in a file

the same size except for the last block. Blocks belonging to a file are

replicated for fault tolerance. The block size and replication factor are

configurable per file. Files in HDFS are write-once and can have only one

writer at any given time.

2.3 MapReduce

MapReduce (implemented on Hadoop) is a framework for parallel

distributed processing large volumes of data. In programming using

MapReduce, it is possible to perform parallel distributed processing by

writing programs involving the following three steps: Map, Shuffle, and

Reduce. Figure 2 shows an example of the flow when Map and Reduce

processes are performed. Because MapReduce automatically performs

inter-process communication between Map and Reduce processes, and

maintain load balancing of the processes.

Muneto Yamamoto and Kunihiko Kaneko 215

Figure 2. Processes performing the map and reduce phases

1. Map concept of data processing

The Map function takes a key-value pair <K, V> as the input and

generates one or multiple pairs <K′, V′ > as the intermediate output.

2. Shuffle concept of data processing

After the Map phase produces the intermediate key-value pair or

key-value pairs, they are efficiently and automatically grouped by key by

the Hadoop system in preparation for the Reduce phase.

3. Reduce concept of data processing

The Reduce function takes as the input a <K′, LIST V′ > pair, where

“LIST V′ ” is a list of all V′ values that are associated with a given key K′.

The Reduce function produces an additional key-value pair as the output.

By combining multiple Map and Reduce processes, we can

accomplish complex tasks which cannot be done via a single Map and

Reduce execution. Figures 3 and 4 respectively show the key-value data

model and a Wordcount example of MapReduce.

Figure 3. Key-value data model of MapReduce

map: <key, value> ⇒ list <key’, value’>

shuffle: list <key’, value’> ⇒ {<key’’, list(value’’)>}

reduce: {<key’’, list(value’’)>} ⇒ list(value’’’)

Map

Map

Map

Reduce

Reduce

Shuffle

MapFunction
Reduce Function

Divided

Data 1

Divided

Data 2

Divided

Data 3

…

Large Data

Output

Results for

Data 1

Output

Results for

Data 2

…

…

…

test1.jpg

test2.jpg

test3.jpg

…

testN.jpg

test1.jpg

test2.jpg

test3.jpg

…

testN.jpg

Divided

Data 1

Divided

Data 2

Divided

Data N

Output

for Data 1

Output

for Data 2

International Journal of Electronic Commerce Studies

216

Figure 4. Wordcount example of MapReduce

2.4 Hadoop Streaming

Hadoop is an open-source implementation of the MapReduce

platform and distributed file system. The Hadoop system is written in

Java. Hadoop Streaming is a utility that comes with the Hadoop

distribution and that can be used to invoke streaming programs that are not

written in Java (such as Ruby, Perl, Python, PHP, R, or C++). Using this

utility, we can execute database programs written in the Ruby

programming language. The utility also allows the user to create and run

Map and Reduce jobs with any executable programs or scripts as the

mapper and the reducer. Figure 5 shows an example of an execution of a

program when using Hadoop Streaming and a description of the Map and

Reduce functions in the Ruby programming language. Key-value pairs can

be specified to depend on the input–output formats.

Figure 5. Usage example of the options for Hadoop Streaming using the

Ruby programming language on Hadoop

./bin/hadoop jar contrib/hadoop-0.20.2-streaming.jar

-input myInputDirs [HDFS Path]

-output myOutputDir [HDFS Path]

-mapper map.rb [map program file path]

-reduce reduce.rb [reduce program file path]

-file filename [local file system path]

-cacheFile fileNameURI [URI to the file that you have already uploaded to HDFS]

-inputformat JavaClassName [Input format should return key/value pairs of Text class]

-outputformat JavaClassName [output format should return key/value pairs of Text class]

//map.rb
def map(key, value, output, reporter)
 # Mapper code
end
//reduce.rb
def reducer(key, value, output, reporter)
 # Reducer code
end

Muneto Yamamoto and Kunihiko Kaneko 217

3. VIDEO DATABASE PROCESSING ON HADOOP

3.1 MapReduce for Video Database Processing

The Map and Reduce functions of MapReduce are both defined with

respect to data structured in key-value pairs. In short, we can perform

distributed processing by creating key-value pairs in MapReduce form.

However, for unstructured data such as video data, it can be assumed that

it is more difficult to create key-value pairs and perform the processing

than processing structured data.

In this experiment, in order to use the Ruby programming language,

we utilize an extension package of Hadoop, namely Hadoop Streaming.

With a view to performing parallel distributed processing on MapReduce

forms, we need to create programs to be used as Map and Reduce

functions in the Ruby programming language. Video database processing

is performed by splitting the data in a video database and creating

key-value pairs. For example, the frame number can be used as a key for a

video frame. In the case of parallel processing of a video frame, the video

frame is divided into multiple parts, and the part numbers can be the keys

(identifiers) for these different parts. Sorting is carried out using the key

number, and joining separated frames or separated parts is performed by

the Reduce function. Figure 6 shows an example of processing flow using

MapReduce. In this figure, each video frame is divided into four parts, and

each part has a unique key number.

Figure 6. Image processing flow using MapReduce

3.2 MapReduce Processing of Video Database

We implemented the following video database processing steps using

Hadoop Streaming. Multiple sequential video frames are input, and image

processing is performed for each video frame. We implemented a Map

function for image processing. The input of the Map function is a single

video frame, and the Map function produces one video frame as output.

International Journal of Electronic Commerce Studies

218

We process video frames in parallel with the slave servers, which use

HDFS. The video database is stored in HDFS. Each Map process also

outputs to HDFS. Figure 7 shows an example of video database processing

flow using the Map function and HDFS.

Figure 7. Sequential video frame processing flow using Map and HDFS

4. EXPERIMENT

In the experiment, we use a video database that contains a set of

video data collected in the area of Nishi-ku in Fukuoka City and Usuki in

Oita Prefecture.

The experimental environment is as follows:

 OS: Ubuntu 11.04, CPU: Intel core i5 2.8 GHz, Memory: 4 GB.

Results of image processing are output to

HDFS.

Multiple sequential video frames are input,

and image processing is performed for each

video frame.

Muneto Yamamoto and Kunihiko Kaneko 219

The software versions are as follows:

 Hadoop-0.20.2, Ruby 1.8.7, and Octave 3.4.2.

The image size is as follows:

 640 480 pixels.

The experiment is described as follows. We first create a grayscale

image of the original image in parallel by using MapReduce. Then,

features of the grayscale image are extracted in parallel by using

MapReduce. Next, we recall a sub-program written in the Octave language

(a high-level interpreted language used for mathematical model fitting,

signal processing, and image processing) from a Ruby program.

We configured the MapReduce system as a pseudo-distributed mode.

Hadoop is composed of a master server which manages slave servers,

which perform the actual image processing. Master and slave servers

actually run on the same server for this configuration of the MapReduce

system (pseudo-distributed mode). The number of copies of video data is

set to 1. The parallel processing of the video database using Hadoop

Streaming is distributed over all of the cores of a CPU of a single

machine.

4.1 Grayscale Images Created by MapReduce

In this experiment, we create a grayscale image of the original image

in parallel by using MapReduce. First of all, we perform the processing of

dividing the image in the Map tasks. Next, the Reduce task accepts the

processed images from the Map tasks, combines the divided image, and

outputs the result image to HDFS.

We used grayscale creation as an example of image processing using

MapReduce. In making the grayscale image from the original, we convert

the RGB values to the NTSC color space as an yiqmap that contains the

equivalent NTSC luminance (Y) and chrominance (I and Q) color

components as columns, where Y, I, and Q are defined as follows:





















































B

G

R

Q

I

Y

312.0523.0211.0

322.0274.0596.0

114.0587.0299.0
 (1)

Here, we specify the number of Map tasks as 4. Figure 8 shows the

results of JobTracker when processing the video database, and shows that

the number of Map tasks is 4 and the number of Reduce task is 1. Figure 9

shows the results given by a Hadoop Web interface program when



International Journal of Electronic Commerce Studies

220

processing image files with MapReduce. Here, we specify the output file

on HDFS when we perform the re-combination of the 4-divided image

from usuki-20110430.avi-000001_divide1.jpg to

usuki-20110430.avi-000001_divide4.jpg. Figure 10 shows the Task ID,

the processing time from start to end, and the status of each TaskTracker

on Hadoop in the experiment. Due to perform considerations, the

maximum number of slave processes allowed to be executed is set to be 2,

and then the tasks are performed in pairs, for example,

task_201201302155_0004_m_000000 and

task_201201302155_0004_m_000001, followed by

task_201201302155_0004_m_000002 and

task_201201302155_0004_m_000003. As a result, we confirmed a

processing time of 4 sec and that two tasks can be performed at the same

time in parallel for this experimental setup.

Figure 8. Results of JobTracker when processing an image

Figure 9. Results shown by a Hadoop Web interface program during

grayscale video image creation using MapReduce

Muneto Yamamoto and Kunihiko Kaneko 221

Figure 10. Status of each TaskTracker on Hadoop when processing image

files with MapReduce

4.2 Feature Extraction of Video Images by Using
MapReduce

In this experiment, we create video images that depict extracted

features in parallel by using MapReduce. First of all, we input multiple

video frames and perform feature extraction processes using Map function

in parallel. In the parallel processing, multiple slave servers use a video

database stored in HDFS and output the processing results to HDFS.

For the process of extracting features of sequential video frames after

multiple video frames are input to slave servers that execute a Map

function, only the Map function is used to output a significant number of

features for each image. First, when a pixel of a video frame contains a

significant amount of features, such as corners and edges, a new pixel is

generated in the output image, and the pixel value is set to be a feature

value. Otherwise, a black pixel is generated in the output image. Let F and

L be the original video frame and a smoothed image of F by a Gaussian

distribution, respectively. We denote the individual pixels of L as l(i, j).

Then, in order to perform feature extraction, we use the Prewitt filter,

which detects edges and lines in an image. In this process, the filter

obtains the horizontal and vertical contours. The filter coefficient is

assumed to be a 3 3 matrix, from which an auto-correlation matrix is

created. The image L is differentiated once in each of the horizontal and

vertical directions, where the notation li and lj is used for the respective

derivatives. In addition, A, B, and C are defined as follows:

    




















































ji

l
llC

j

l
lB

i

l
lA

ji

l
ll k

ji
k

j
k

i
k

ji

22

2

2

2
2

,, , 　　　 (2)

The auto-correlation matrix, denoted by M, is given in terms of A, B,

and C as follows:



International Journal of Electronic Commerce Studies

222











BC

CA
M

 (3)

Then, the feature points of the Harris corner detection are extracted

using the value c(i, j) of each pixel
5, 6

:

2))(tr()det(),(MkMjic  (4)

Det and tr represent the determinant function and the sum of the

diagonal elements, respectively. Here, k is an adjustable parameter and is

generally taken to be within the range 0.04 to 0.06. In our experiment, k is

taken to be 0.04. In addition, the eigenvalues λ1 and λ2 are obtained as

follows:

2

21)det(CABM   , BAM  21)(tr 
(5)

Threshold T is used to decide which c(i, j) are used in the output

image. A pixel value in the output image is set to be 0 if c(i, j) < T. The

absolute value of c(i, j) as calculated from the two eigenvalues λ1 and λ2 is

denoted by R(i, j). In addition, the maximum and minimum values

max(R(i, j)) and min(R(i, j)) are normalized to 0 and 255, respectively, in

the output image. The pixel values in the output image have a 256-level

range from 0 to 255. Using this method, we create a mask image with a

threshold using a feature extraction image. Figure 11 shows examples of

the original image (left), feature extraction image (center), and mask

image (right). The feature extraction image is the result of processing the

original image using the Harris corner detection, and the mask image is

the result of processing the feature extraction image taking advantage of

the threshold T.

Figure 11. Examples of an input image, feature extraction image, and

output image. The output image is used as the mask image

Muneto Yamamoto and Kunihiko Kaneko 223

For the Map processing, we input a sequence of eight images and

perform the process. As a result, we output eight corresponding image

files. The output image files are used for masking the input image. Here,

we specify the output file on HDFS when we perform image processing of

eight images, for example, as the eight images

usuki-20110430.avi-000001jpg through usuki-20110430.avi-000008.jpg.

Figure 12 shows the MapReduce status in halfway through the execution;

at this point, six of the eight tasks have been performed and 25% of the

processing has been completed. Figure 13 shows Task ID, processing time

from start to end, and status of each TaskTracker on Hadoop. Due to

perform considerations, the maximum number of slave processes executed

is set to be 2, two tasks are performed, such as

task_201111161359_0007_m_000000 and

task_201111161359_0007_m_000001, and then the eight tasks are

performed in pairs in parallel, for example,

task_201111161359_0007_m_000000 and

task_201111161359_0007_m_000001, followed by

201111161359_0007_m_000002 and

task_201111161359_0007_m_000003. As a result, we achieved a

processing time of 2 min 27 sec. Figure 14 shows a MapReduce status

report used to confirm the successful termination of MapReduce tasks.

Here, we specify that the number of Map tasks is 8 and the number of

Reduce tasks is 0.

Figure 12. MapReduce status in the middle of execution

International Journal of Electronic Commerce Studies

224

Figure 13. Status of each TaskTracker on Hadoop

Figure 14. MapReduce status after termination of execution

The total number of Map tasks is set to be 8, and the maximum

number of slave processes executed is set to be either 2, 4, 6, or 8 in our

experimental test. The creation time of the mask image was 2 minutes and

27 seconds when we performed the slave process in parallel using 2

processor-cores. Without MapReduce, processing time of the same task

averages 2 minutes and 6 seconds, implying a favorable difference of

about 21 seconds. We assume that this difference is due to the processing

time for the input–output of video database on HDFS, the access time of

external programs written in the Octave and Ruby programming

languages, and the latency time of performing the Map processing. Figures

15 and 16 show respectively the total processing time and the processing

time of each TaskTracker when a sequence of eight images is processed

by using MapReduce in pseudo-distributed mode. Figure 17 shows an

example of a part of the program code for feature extraction of video

images using MapReduce.

Muneto Yamamoto and Kunihiko Kaneko 225

Figure15. Versus the maximum number of slave processes

Figure16. Processing time for each TaskTracker for different numbers of

Map tasks performed simultaneously

5. SUMMARY AND FUTURE WORK

In this paper, we describe using a video database of video collected

with a video camera. In an experiment, we processed sequences of video

frames with MapReduce to create grayscale images and extracted some

features of the video images. In the process of creating the grayscale

images, each video frame was divided into multiple parts. In the

extraction, frame numbers were used as the key numbers to extract some

features of the video images. In future, it is necessary for us to build a

distributed environment that combines multiple machines, conduct

large-scale experiments involving sequential video images, evaluate the

Map Task (Maximum)

Processing Time for every TaskTracker

0

20

40

60

80

100

2 4 6 8

Map Task(Maximum)

T
im

e[
s]

TaskTracker1

TaskTracker2

TaskTracker3

TaskTracker4

International Journal of Electronic Commerce Studies

226

performance speed of the implementation with MapReduce, and verify the

efficient key-value pairs.

Figure17. Example program for feature extraction of video images using

MapReduce

6. ACKNOWLEDGMENT

This work was supported by Grant-in-Aid for Scientific Research (C)

 50274494.

7. REFERENCES

[1] D. Jeffrey, and G. Sanjay, MapReduce: Simplified data processing on

large clusters. Paper presented at OSDI'04: Sixth Symposium on

Operating System Design and Implementation, San Francisco, USA,

December 6-8, 2004.

[2] D. Sudipto, S. Yannis, S.B. Kevin, G. Rainer, J.H. Peter, and M. John,

Ricardo: Integrating R and hadoop. Paper presented at the 2010

international conference on Management of data, Indianapolis, USA,

June 6-11, 2010.

Muneto Yamamoto and Kunihiko Kaneko 227

[3] S. Chris, L. Liu, A. Sean, and L. Jason, HIPI: A hadoop image

processing interface for image-based map reduce tasks, B.S. Thesis.

University of Virginia, Department of Computer Science, 2011.

[4] W. Keith, C. Andrew, K. Simon, G. Jeff, B. Magdalena, H. Bill, K.

YongChul, and B. Yingyi, Astronomical image processing with

hadoop. Paper presented at Astronomical Data Analysis Software and

Systems XX, Boston, USA, November 7-11, 2010.

[5] H. Chris, and S. Mike, A combined corner and edge detector. Paper

presented at the 4th Alvey Vision Conference, Manchester, England,

August 31 - September 2, 1988.

[6] K. Yasushi, and K. Kenichi, Detection of feature points for computer

vision. The Journal of the Institute of Electronics, Information, and

Communication Engineers, 87(12), p1043-1048, 2004.

International Journal of Electronic Commerce Studies

228

