International Journal of Electronic Commerce Studies
\Vol.3, No.2, pp.211-228, 2012
doi: 10.7903/ijecs.1092

PARALLEL IMAGE DATABASE PROCESSING
WITH MAPREDUCE AND PERFORMANCE
EVALUATION IN PSEUDO DISTRIBUTED MODE

Muneto Yamamoto
Kyushu University
Motooka 744, Nishi-Ku, Fukuoka-Shi, 819-0395, Japan
mnt.ymmt@gmail.com

Kunihiko Kaneko
Kyushu University
Motooka 744, Nishi-Ku, Fukuoka-Shi, 819-0395, Japan
kaneko@ait.kyushu-u.ac.jp

ABSTRACT

With recent improvements in camera performance and the spread of
low-priced and lightweight video cameras, a large amount of video data is
generated, and stored in database form. At the same time, there are limits
on what can be done to improve the performance of single computers to
make them able to process large-scale information, such as in video
analysis. Therefore, an important research topic is how to perform parallel
distributed processing of a video database by using the computational
resource in a cloud environment. At present, the Apache Hadoop
distribution for open-source cloud computing is available from
MapReduce®. In the present study, we report our results on an evaluation
of performance, which remains a problem for video processing in
distributed environments, and on parallel experiments using MapReduce
on Hadoop®.

Keywords: Hadoop, MapReduce, Image Processing, Sequential Image
Database

1. INTRODUCTION

With the spread of cloud computing and network techniques and
equipment in recent years, a large amount of data collected in a variety of
social situations have been accumulated, and so the need for analysis

mailto:mnt.ymmt@gmail.com

212 International Journal of Electronic Commerce Studies

techniques to take advantage of useful information that can be extracted
from such data sets is increasing. This is also true for video data, in which
images are sequential and the data includes the associated time and frame
information of each frame. Today, because video cameras are set up to
perform surveillance of moving objects such as pedestrians and vehicles, a
large amount of video data is generated, and stored in database form. To
improve these video database systems, which hold a large amount of video
and related data, parallel processing using CPUs and disks at multiple sites
is an important area of research.

Also, when considering operations such as search and other types of
analysis of video images recorded by video camera and stored in a
database, there are limits on what can be done to improve the performance
of single computers to make them able to process large-scale information.
Therefore, the advantages of parallel distributed processing of a video
database by using the computational resources of a cloud computing
environment should be considered. In addition, if computational resources
can be secured easily and relatively inexpensively, then cloud computing
is suitable for handling large video databases at low cost. Hadoop, as a
mechanism for processing large numbers of databases by parallel and
distributed computing has been recognized as promising. Nowadays, for
reasons such as ease of programming, by using the function MapReduce
on the Hadoop system, open-source cloud-based systems that can process
data across multiple machines in a distributed environment have been
studied for their application to various database operations. In fact,
Hadoop is in use all over the world®. Studies using Hadoop have been
performed to treat one file as a text data file or multiple files as a single
file unit, such as for the analysis of large volumes of DNA sequence data,
converting the data of a large number of still images to PDF format, and
carrying out feature selection/extraction in astronomy”. These examples
demonstrate the usefulness of this system, which is due to its having the
ability to run multiple processes in parallel for load balancing and task
management.

The rest of this paper is organized as follows. Section 2 provides the
background knowledge related to this work, including an overview of the
MapReduce programming model and why MapReduce is deployed in a
distributed environment. In section 3, we discuss the architecture of our
system and problems arising when processing video databases by using
MapReduce on Hadoop in a distributed environment. Then, we give an
overview on our experimental methodology and present the results of our
experiments in section 4. Finally, we conclude the paper and propose
future work in section 5.

Muneto Yamamoto and Kunihiko Kaneko 213

2. HADOOP STREAMING FOR DATABSE
PROCESSING

2.1 Parallel and Distributed Processing on Hadoop

As the structure of the system, Hadoop consists of two components,
the Hadoop Distributed File System (HDFS) and MapReduce, performing
distributed processing by single-master and multiple-slave servers. There
are two elements of MapReduce, namely JobTracker and TaskTracker,
and two elements of HDFS, namely DataNode and NameNode. In Figure
1, the configuration of these elements of MapReduce and HDFS on
Hadoop are indicated. There is also a mechanism that checks the metadata
for NameNode.

(A) JobTracker

JobTracker manages cluster resources and job scheduling to and
monitoring on separate components.

Client I BLUE:MapReduce Element
RED:HDFS Element
| SlaveN |

—@ Slave 0 Slave 2

| vesReRe
=
I

Hadoop

Figure 1. Structure with elements of MapReduce and HDFS

(B) TaskTracker

TaskTracker is a slave node daemon in the cluster that accepts tasks
and returns the results after executing tasks received by JobTracker.

(C) NameNode

An HDFS cluster consists of a single NameNode, a master server that
manages the file system namespace and regulates access to files by clients.
NameNode executes file system name space operations, such as opening,
closing, and renaming files and directories. It also determines the mapping
of blocks to DataNodes.

214 International Journal of Electronic Commerce Studies

(D) DataNode

The cluster also has a number of DataNodes, usually one per node in
the cluster. DataNodes manage the storage that is attached to the nodes on
which they run. DataNodes also perform block creation, deletion, and
replication in response to direction from NameNode.

(E) SecondaryNameNode

SecondaryNameNode is a helper to the primary NameNode.
Secondary is responsible for supporting periodic checkpoints of the HDFS
metadata.

2.2 Hadoop Distributed File System (HDFS)

HDFS is designed to reliably store very large files across machines in
a large cluster. It is inspired by the Google File System. HDFS is
composed of NameNode and DataNode. HDFS stores each file as a
sequence of blocks (currently 64 MB by default) with all blocks in a file
the same size except for the last block. Blocks belonging to a file are
replicated for fault tolerance. The block size and replication factor are
configurable per file. Files in HDFS are write-once and can have only one
writer at any given time.

2.3 MapReduce

MapReduce (implemented on Hadoop) is a framework for parallel
distributed processing large volumes of data. In programming using
MapReduce, it is possible to perform parallel distributed processing by
writing programs involving the following three steps: Map, Shuffle, and
Reduce. Figure 2 shows an example of the flow when Map and Reduce
processes are performed. Because MapReduce automatically performs
inter-process communication between Map and Reduce processes, and
maintain load balancing of the processes.

Muneto Yamamoto and Kunihiko Kaneko 215

MapFunction .
Large Data p Reduce Function

D|V|ded Ma
. / Data 1 ; S
------- e

Data 2

Data N

Output
for Data 1

v .
testl.jpg

/\ t .'
|] est21_pg
testd.j test3.jpg

ey I Reduce = =3 g

? forData2f . .\, :

test3.jpg orbaia testN.jpg

Figure 2. Processes performing the map and reduce phases

1. Map concept of data processing

The Map function takes a key-value pair <K, V> as the input and
generates one or multiple pairs <K', V' > as the intermediate output.

2. Shuffle concept of data processing

After the Map phase produces the intermediate key-value pair or
key-value pairs, they are efficiently and automatically grouped by key by

the Hadoop system in preparation for the Reduce phase.

3. Reduce concept of data processing

The Reduce function takes as the input a <K', LIST V' > pair, where

“LIST V' is a list of all V' values that are associated with a given key K'.
The Reduce function produces an additional key-value pair as the output.

By combining multiple Map and Reduce processes, we can
accomplish complex tasks which cannot be done via a single Map and
Reduce execution. Figures 3 and 4 respectively show the key-value data
model and a Wordcount example of MapReduce.

map: <key, value> = list <key’, value’>
shuffle: list <key’, value’> = {<key”’, list(value’’)>}

reduce: {<key’’, list(value’’)>} = list(value’’’)

Figure 3. Key-value data model of MapReduce

216 International Journal of Electronic Commerce Studies

Perform multiple Map tasks Perform a Reduce task

FileName (input.txt)

foo foo foo ...
foo foo foo ...
bar bar buz ... bar bar buz ...
test data<...
test data < ...

Map Function

Figure 4. Wordcount example of MapReduce

2.4 Hadoop Streaming

Hadoop is an open-source implementation of the MapReduce
platform and distributed file system. The Hadoop system is written in
Java. Hadoop Streaming is a utility that comes with the Hadoop
distribution and that can be used to invoke streaming programs that are not
written in Java (such as Ruby, Perl, Python, PHP, R, or C++). Using this
utility, we can execute database programs written in the Ruby
programming language. The utility also allows the user to create and run
Map and Reduce jobs with any executable programs or scripts as the
mapper and the reducer. Figure 5 shows an example of an execution of a
program when using Hadoop Streaming and a description of the Map and
Reduce functions in the Ruby programming language. Key-value pairs can
be specified to depend on the input—output formats.

.bin/hadoop jar contrib/hadoop-0.20.2-streaming.jar
. . /Imap.rb
-input mylnputDirs [HDFS Path] def map(key, value, output, reporter)
-output myOutputDir [HDFS Path] eng Mapper code
-mapper map.rb [map program file path] //reduce.rb
def reducer(key, value, output, reporter)
-reduce reduce.rb [reduce program file path] # Reducer code
end
-file filename [local file system path]

-cacheFile fileNameURI [URI to the file that you have already uploaded to HDFS]
-inputformat JavaClassName [Input format should return key/value pairs of Text class]

-outputformat JavaClassName [output format should return key/value pairs of Text class]

Figure 5. Usage example of the options for Hadoop Streaming using the
Ruby programming language on Hadoop

Muneto Yamamoto and Kunihiko Kaneko 217

3. VIDEO DATABASE PROCESSING ON HADOOP

3.1 MapReduce for Video Database Processing

The Map and Reduce functions of MapReduce are both defined with
respect to data structured in key-value pairs. In short, we can perform
distributed processing by creating key-value pairs in MapReduce form.
However, for unstructured data such as video data, it can be assumed that
it is more difficult to create key-value pairs and perform the processing
than processing structured data.

In this experiment, in order to use the Ruby programming language,
we utilize an extension package of Hadoop, namely Hadoop Streaming.
With a view to performing parallel distributed processing on MapReduce
forms, we need to create programs to be used as Map and Reduce
functions in the Ruby programming language. Video database processing
is performed by splitting the data in a video database and creating
key-value pairs. For example, the frame number can be used as a key for a
video frame. In the case of parallel processing of a video frame, the video
frame is divided into multiple parts, and the part numbers can be the keys
(identifiers) for these different parts. Sorting is carried out using the key
number, and joining separated frames or separated parts is performed by
the Reduce function. Figure 6 shows an example of processing flow using
MapReduce. In this figure, each video frame is divided into four parts, and
each part has a unique key number.

Ve,)
Mapper.rb

key-value pair

| <key, value> |
Map

\ Reducer.rb
Map [SO ™

L (=
Reduce
1 “

Figure 6. Image processing flow using MapReduce

Map

7

Map 1

Data

3.2 MapReduce Processing of Video Database

We implemented the following video database processing steps using
Hadoop Streaming. Multiple sequential video frames are input, and image
processing is performed for each video frame. We implemented a Map
function for image processing. The input of the Map function is a single
video frame, and the Map function produces one video frame as output.

218 International Journal of Electronic Commerce Studies

We process video frames in parallel with the slave servers, which use
HDFS. The video database is stored in HDFS. Each Map process also
outputs to HDFS. Figure 7 shows an example of video database processing
flow using the Map function and HDFS.

TimeAxis

Time+1

Multiple sequential video frames are input,
and image processing is performed for each
video frame.

|

Results of image processing are output to

Figure 7. Sequential video frame processing flow using Map and HDFS

4. EXPERIMENT

In the experiment, we use a video database that contains a set of
video data collected in the area of Nishi-ku in Fukuoka City and Usuki in
Oita Prefecture.

The experimental environment is as follows:

B OS: Ubuntu 11.04, CPU: Intel core i5 2.8 GHz, Memory: 4 GB.

Muneto Yamamoto and Kunihiko Kaneko 219

The software versions are as follows:

B Hadoop-0.20.2, Ruby 1.8.7, and Octave 3.4.2.
The image size is as follows:

B 640 X480 pixels.

The experiment is described as follows. We first create a grayscale
image of the original image in parallel by using MapReduce. Then,
features of the grayscale image are extracted in parallel by using
MapReduce. Next, we recall a sub-program written in the Octave language
(a high-level interpreted language used for mathematical model fitting,
signal processing, and image processing) from a Ruby program.

We configured the MapReduce system as a pseudo-distributed mode.
Hadoop is composed of a master server which manages slave servers,
which perform the actual image processing. Master and slave servers
actually run on the same server for this configuration of the MapReduce
system (pseudo-distributed mode). The number of copies of video data is
set to 1. The parallel processing of the video database using Hadoop
Streaming is distributed over all of the cores of a CPU of a single
machine.

4.1 Grayscale Images Created by MapReduce

In this experiment, we create a grayscale image of the original image
in parallel by using MapReduce. First of all, we perform the processing of
dividing the image in the Map tasks. Next, the Reduce task accepts the
processed images from the Map tasks, combines the divided image, and
outputs the result image to HDFS.

We used grayscale creation as an example of image processing using
MapReduce. In making the grayscale image from the original, we convert
the RGB values to the NTSC color space as an yigmap that contains the
equivalent NTSC Iluminance (Y) and chrominance (I and Q) color
components as columns, where Y, I, and Q are defined as follows:

Y 0.299 0.587 0.114 | R (1)
I |[=/0596 -0.274 -0.322|G

Q 0.211 -0.523 0.312 | B

Here, we specify the number of Map tasks as 4. Figure 8 shows the
results of JobTracker when processing the video database, and shows that
the number of Map tasks is 4 and the number of Reduce task is 1. Figure 9
shows the results given by a Hadoop Web interface program when

220 International Journal of Electronic Commerce Studi

processing image files with MapReduce. Here, we specify the output file
on HDFS when we perform the re-combination of the 4-divided image
from usuki-20110430.avi-000001_dividel.jpg to
usuki-20110430.avi-000001_divide4.jpg. Figure 10 shows the Task ID,
the processing time from start to end, and the status of each TaskTracker
on Hadoop in the experiment. Due to perform considerations, the
maximum number of slave processes allowed to be executed is set to be 2,
and then the tasks are performed in pairs, for example,

task_201201302155 0004 _m_000000 and
task 201201302155 0004 m_ 000001, followed by
task_201201302155 0004 _m_000002 and

task 201201302155 0004 m _000003. As a result, we confirmed a
processing time of 4 sec and that two tasks can be performed at the same
time in parallel for this experimental setup.

es

Kind % Complete | Num Tasks | Pending | Running | Complete | Killed -t i

lled

Task Attempts

MEP | e D00 4 0 0 4 0 0/0
reduce | ____100.00% 1 0 0 1 0 0/0

Figure 8. Results of JobTracker when processing an image

MNMame Type Size

4.jpg | file | 42.04 KB

file | 532.31 KB

file | 600 RB

file | 53.64 KB

file | 600 KB

file | 33.64 KB

file | 600 KB
file |52.17 KB
file | 600 KB

file | 52.36 KB

file | 600 KB

file | 532.2 KB

file | 600 RB

file | 51 .88 KB

file | 600 KB

file | 53.13 KB

Figure 9. Results shown by a Hadoop Web interface program during
grayscale video image creation using MapReduce

Muneto Yamamoto and Kunihiko Kaneko 221

Task Complete Status Start Time Finish Time Errors | Counters
tesk_201201302155_0004_m_000000 | 190:00% __ | pecords R/W=1/1 | 30-1-2012 22:05:05 | 30-1-2012 22:05:07 (2sec) 10
tesk_201201302155_0004_m_000001 | 190.00% | pecords R/W=1/1 | 30-1-2012 22:05:05 | 30-1-2012 22:05:07 (2sec) 10
task_201201302155_0004_m_000002 | 10000% | pocards R/W=1/1 | 30-1-2012 22:05:07 | 30-1-2012 22:05:09 (2sec) 10
task_201201302155_0004_m_000003 | 19890% __ | gecords R/W=1/1| 30-1-2012 22:05:07 | 30-1-2012 22:05:09 (2sec) 10

Figure 10. Status of each TaskTracker on Hadoop when processing image
files with MapReduce

4.2 Feature Extraction of Video Images by Using
MapReduce

In this experiment, we create video images that depict extracted
features in parallel by using MapReduce. First of all, we input multiple
video frames and perform feature extraction processes using Map function
in parallel. In the parallel processing, multiple slave servers use a video
database stored in HDFS and output the processing results to HDFS.

For the process of extracting features of sequential video frames after
multiple video frames are input to slave servers that execute a Map
function, only the Map function is used to output a significant number of
features for each image. First, when a pixel of a video frame contains a
significant amount of features, such as corners and edges, a new pixel is
generated in the output image, and the pixel value is set to be a feature
value. Otherwise, a black pixel is generated in the output image. Let F and
L be the original video frame and a smoothed image of F by a Gaussian
distribution, respectively. We denote the individual pixels of L as I(i, j).
Then, in order to perform feature extraction, we use the Prewitt filter,
which detects edges and lines in an image. In this process, the filter
obtains the horizontal and vertical contours. The filter coefficient is
assumed to be a 3 X3 matrix, from which an auto-correlation matrix is
created. The image L is differentiated once in each of the horizontal and
vertical directions, where the notation |; and I; is used for the respective
derivatives. In addition, A, B, and C are defined as follows:

W, :(Zf'@ﬂ A=(,) :(%ka,sz(h)z =(%T,C=Ii j :(Z:;:J @)

The auto-correlation matrix, denoted by M, is given in terms of A, B,
and C as follows:

222 International Journal of Electronic Commerce Studies

wo|AC
{c B} 3)

Then, the feature points of the Harris corner detection are extracted
using the value c(i, j) of each pixel®®:

c(i, j) =det(M)—k(tr(M))> (4)

Det and tr represent the determinant function and the sum of the
diagonal elements, respectively. Here, k is an adjustable parameter and is
generally taken to be within the range 0.04 to 0.06. In our experiment, K is
taken to be 0.04. In addition, the eigenvalues 4, and A, are obtained as
follows:

det(M)=A44, =AB-C?, tr(M)=A4 +4, =A+B (5)

Threshold T is used to decide which c(i, j) are used in the output
image. A pixel value in the output image is set to be 0 if c(i, j) < T. The
absolute value of c(i, j) as calculated from the two eigenvalues 1; and A; is
denoted by R(i, j). In addition, the maximum and minimum values
max(R(i, j)) and min(R(i, j)) are normalized to 0 and 255, respectively, in
the output image. The pixel values in the output image have a 256-level
range from O to 255. Using this method, we create a mask image with a
threshold using a feature extraction image. Figure 11 shows examples of
the original image (left), feature extraction image (center), and mask
image (right). The feature extraction image is the result of processing the
original image using the Harris corner detection, and the mask image is
the result of processing the feature extraction image taking advantage of
the threshold T.

FileName (test1.jpg) FileName (ed_mask-test1-1.jpg)

| Input Image | Gray Scale Image Extracted | Mask Image |
as the Amount of Features

Figure 11. Examples of an input image, feature extraction image, and
output image. The output image is used as the mask image

Muneto Yamamoto and Kunihiko Kaneko 223

For the Map processing, we input a sequence of eight images and
perform the process. As a result, we output eight corresponding image
files. The output image files are used for masking the input image. Here,
we specify the output file on HDFS when we perform image processing of
eight images, for example, as the eight images
usuki-20110430.avi-000001jpg through usuki-20110430.avi-000008.jpg.
Figure 12 shows the MapReduce status in halfway through the execution;
at this point, six of the eight tasks have been performed and 25% of the
processing has been completed. Figure 13 shows Task ID, processing time
from start to end, and status of each TaskTracker on Hadoop. Due to
perform considerations, the maximum number of slave processes executed
is set to be 2, two tasks are performed, such as

task 201111161359 _0007_m_000000 and
task 201111161359 0007_m_000001, and then the eight tasks are
performed in pairs in parallel, for example,
task_201111161359 0007 _m_000000 and
task 201111161359 0007_m_000001, followed by
201111161359 0007_m_000002 and

task 201111161359 0007_m_000003. As a result, we achieved a
processing time of 2 min 27 sec. Figure 14 shows a MapReduce status
report used to confirm the successful termination of MapReduce tasks.
Here, we specify that the number of Map tasks is 8 and the number of
Reduce tasks is 0.

. . R : Failed/Killed
Kind | % Complete | Num Tasks | Pending | Running | Complete | Killed Tazk Aftempts
map 25.00% 8 6 1 1 0 0/0

reduce 0.00% 0 0] 0 0 0 0/0

Figure 12. MapReduce status in the middle of execution

224

International Journal of Electronic Commerce Studies

Task Complete Status Start Time Finish Time Errors | Counters
task_201111161359_0007_m_000000 | 190:00% Records R/W=1/14 | 29-11-2011 05:48:16 | 29-11-2011 05:48:53 (37sec) 8
task_201111161359_0007_m_000001 |100.00% Records R/W=1/14 | 29-11-2011 05:48:16 | 29-11-2011 05:48:53 (36sec) 8
task_201111161359_0007_m_000002 | 190.00% Records R/W=1/14 | 29-11-2011 05:48:52 | 29-11-2011 05:49:29 (37sec) 8
task_201111161359_0007_m_000003 | 100.00% Records R/W=1/14 | 29-11-2011 05:48:52 | 29-11-2011 05:49:30 (37sec) 8
task_201111161359_0007_m_000004 | 190.00% Records R/W=1/14 | 29-11-2011 05:49:28 | 29-11-2011 05:50:05 (37sec) 8
task_201111161359_0007_m_000005 | 100.00% Records R/W=1/14 | 29-11-2011 05:49:29 | 29-11-2011 05:50:07 (37sec) 8
task_201111161359_0007_m_000006 | L2200 Records R/W=1/14 | 29-11-2011 05:50:04 | 23-11-2011 05:50:41 (37sec) 8
task_201111161359_0007_m_000007 | 100.00% Records R/W=1/14 | 29-11-2011 05:50:05 | 29-11-2011 05:50:43 (37sec) 8

Figure 13. Status of each TaskTracker on Hadoop
Finished in: 2mins, 27sec
Job Cleanup: Successful
Kind % Complete | Num Tasks | Pending | Running | Complete | Killed ;:;Leg{ttir:;?s
map 100.00% 8 0 0 8 0 0/0
reduce 100.00% 0 0 0 0 0 0/0

Figure 14. MapReduce status after termination of execution

The total number of Map tasks is set to be 8, and the maximum
number of slave processes executed is set to be either 2, 4, 6, or 8 in our
experimental test. The creation time of the mask image was 2 minutes and
27 seconds when we performed the slave process in parallel using 2
processor-cores. Without MapReduce, processing time of the same task
averages 2 minutes and 6 seconds, implying a favorable difference of
about 21 seconds. We assume that this difference is due to the processing
time for the input—output of video database on HDFS, the access time of
external programs written in the Octave and Ruby programming
languages, and the latency time of performing the Map processing. Figures
15 and 16 show respectively the total processing time and the processing
time of each TaskTracker when a sequence of eight images is processed
by using MapReduce in pseudo-distributed mode. Figure 17 shows an
example of a part of the program code for feature extraction of video
images using MapReduce.

Muneto Yamamoto and Kunihiko Kaneko 225

Processing Time [s]

300

S RN

AN

AN

100 \ -~ —+—Processing Time [s]

"*____..--"f__—""---_.___’

Time[s]

50

Map Task({Maximum)

Figurel5. Versus the maximum number of slave processes

Processing Time for every TaskTracker

100

80
B TaskTrackerl

60 ‘
‘ B TaskTracker2
40
‘ O TaskTracker3
20 J O TaskTracker4
0
4 6 8

Time[s]

2
Map Task(Maximum)

Figurel6. Processing time for each TaskTracker for different numbers of
Map tasks performed simultaneously

5. SUMMARY AND FUTURE WORK

In this paper, we describe using a video database of video collected
with a video camera. In an experiment, we processed sequences of video
frames with MapReduce to create grayscale images and extracted some
features of the video images. In the process of creating the grayscale
images, each video frame was divided into multiple parts. In the
extraction, frame numbers were used as the key numbers to extract some
features of the video images. In future, it is necessary for us to build a
distributed environment that combines multiple machines, conduct
large-scale experiments involving sequential video images, evaluate the

226

performance speed of the implementation with MapReduce, and verify the

International Journal of Electronic Commerce Studies

efficient key-value pairs.

Figurel7. Example program for feature extraction of video images using

#Map

keyl = "#{k}"

valuel = "#{v}"

f_name = File.basename(valuel," jpg")

ef name =f name +"_divide" + key1 + " jpg"

key2 = "#{k}"

value2 = ef name + "#{v}"

puts "#key2i¥t#value2}"
end

#Reduce
image = Hash.new {|h, k| hlk] =0}

imgList["

'1-2"] = ef namel-2
imgList["3-4"] = ef_name3-4
A=image['1"]; B =image["2"]; C = image['3"]: D = image["4"]

def image append(imagel, image2, image3, image4)
str = "octave -q Reduce_img-devide.m "
+imagel +" " +image2 + " " + image3 +
p system(str)
end

iiﬁagefappend(A, B,C, D)

" "+ imaged

MapReduce

6. ACKNOWLEDGMENT

50274494.

[1] D. Jeffrey, and G. Sanjay, MapReduce: Simplified data processing on
large clusters. Paper presented at OSDI'04: Sixth Symposium on
Operating System Design and Implementation, San Francisco, USA,
December 6-8, 2004.
D. Sudipto, S. Yannis, S.B. Kevin, G. Rainer, J.H. Peter, and M. John,
Ricardo: Integrating R and hadoop. Paper presented at the 2010
international conference on Management of data, Indianapolis, USA,
June 6-11, 2010.

[2]

7. REFERENCES

This work was supported by Grant-in-Aid for Scientific Research (C)

Muneto Yamamoto and Kunihiko Kaneko 227

[3] S. Chris, L. Liu, A. Sean, and L. Jason, HIPI: A hadoop image
processing interface for image-based map reduce tasks, B.S. Thesis.
University of Virginia, Department of Computer Science, 2011.

[4] W. Keith, C. Andrew, K. Simon, G. Jeff, B. Magdalena, H. Bill, K.
YongChul, and B. Yingyi, Astronomical image processing with
hadoop. Paper presented at Astronomical Data Analysis Software and
Systems XX, Boston, USA, November 7-11, 2010.

[5] H. Chris, and S. Mike, A combined corner and edge detector. Paper
presented at the 4th Alvey Vision Conference, Manchester, England,
August 31 - September 2, 1988.

[6] K. Yasushi, and K. Kenichi, Detection of feature points for computer
vision. The Journal of the Institute of Electronics, Information, and
Communication Engineers, 87(12), p1043-1048, 2004.

228 International Journal of Electronic Commerce Studies

