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ABSTRACT 

With recent improvements in camera performance and the spread of 

low-priced and lightweight video cameras, a large amount of video data is 

generated, and stored in database form. At the same time, there are limits 

on what can be done to improve the performance of single computers to 

make them able to process large-scale information, such as in video 

analysis. Therefore, an important research topic is how to perform parallel 

distributed processing of a video database by using the computational 

resource in a cloud environment. At present, the Apache Hadoop 

distribution for open-source cloud computing is available from 

MapReduce
1
. In the present study, we report our results on an evaluation 

of performance, which remains a problem for video processing in 

distributed environments, and on parallel experiments using MapReduce 

on Hadoop
2
. 

Keywords: Hadoop, MapReduce, Image Processing, Sequential Image 

Database 

 

1. INTRODUCTION 

With the spread of cloud computing and network techniques and 

equipment in recent years, a large amount of data collected in a variety of 

social situations have been accumulated, and so the need for analysis 
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techniques to take advantage of useful information that can be extracted 

from such data sets is increasing. This is also true for video data, in which 

images are sequential and the data includes the associated time and frame 

information of each frame. Today, because video cameras are set up to 

perform surveillance of moving objects such as pedestrians and vehicles, a 

large amount of video data is generated, and stored in database form. To 

improve these video database systems, which hold a large amount of video 

and related data, parallel processing using CPUs and disks at multiple sites 

is an important area of research. 

Also, when considering operations such as search and other types of 

analysis of video images recorded by video camera and stored in a 

database, there are limits on what can be done to improve the performance 

of single computers to make them able to process large-scale information. 

Therefore, the advantages of parallel distributed processing of a video 

database by using the computational resources of a cloud computing 

environment should be considered. In addition, if computational resources 

can be secured easily and relatively inexpensively, then cloud computing 

is suitable for handling large video databases at low cost. Hadoop, as a 

mechanism for processing large numbers of databases by parallel and 

distributed computing has been recognized as promising. Nowadays, for 

reasons such as ease of programming, by using the function MapReduce 

on the Hadoop system, open-source cloud-based systems that can process 

data across multiple machines in a distributed environment have been 

studied for their application to various database operations. In fact, 

Hadoop is in use all over the world
3
. Studies using Hadoop have been 

performed to treat one file as a text data file or multiple files as a single 

file unit, such as for the analysis of large volumes of DNA sequence data, 

converting the data of a large number of still images to PDF format, and 

carrying out feature selection/extraction in astronomy
4
. These examples 

demonstrate the usefulness of this system, which is due to its having the 

ability to run multiple processes in parallel for load balancing and task 

management. 

The rest of this paper is organized as follows. Section 2 provides the 

background knowledge related to this work, including an overview of the 

MapReduce programming model and why MapReduce is deployed in a 

distributed environment. In section 3, we discuss the architecture of our 

system and problems arising when processing video databases by using 

MapReduce on Hadoop in a distributed environment. Then, we give an 

overview on our experimental methodology and present the results of our 

experiments in section 4. Finally, we conclude the paper and propose 

future work in section 5. 
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2. HADOOP STREAMING FOR DATABSE 
PROCESSING 

2.1 Parallel and Distributed Processing on Hadoop 

As the structure of the system, Hadoop consists of two components, 

the Hadoop Distributed File System (HDFS) and MapReduce, performing 

distributed processing by single-master and multiple-slave servers. There 

are two elements of MapReduce, namely JobTracker and TaskTracker, 

and two elements of HDFS, namely DataNode and NameNode. In Figure 

1, the configuration of these elements of MapReduce and HDFS on 

Hadoop are indicated. There is also a mechanism that checks the metadata 

for NameNode. 

(A) JobTracker 

JobTracker manages cluster resources and job scheduling to and 

monitoring on separate components. 

Figure 1. Structure with elements of MapReduce and HDFS 

(B) TaskTracker 

TaskTracker is a slave node daemon in the cluster that accepts tasks 

and returns the results after executing tasks received by JobTracker. 

(C) NameNode 

An HDFS cluster consists of a single NameNode, a master server that 

manages the file system namespace and regulates access to files by clients. 

NameNode executes file system name space operations, such as opening, 

closing, and renaming files and directories. It also determines the mapping 

of blocks to DataNodes. 
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(D) DataNode 

The cluster also has a number of DataNodes, usually one per node in 

the cluster. DataNodes manage the storage that is attached to the nodes on 

which they run. DataNodes also perform block creation, deletion, and 

replication in response to direction from NameNode. 

(E) SecondaryNameNode 

SecondaryNameNode is a helper to the primary NameNode. 

Secondary is responsible for supporting periodic checkpoints of the HDFS 

metadata. 

2.2 Hadoop Distributed File System (HDFS) 

HDFS is designed to reliably store very large files across machines in 

a large cluster. It is inspired by the Google File System. HDFS is 

composed of NameNode and DataNode. HDFS stores each file as a 

sequence of blocks (currently 64 MB by default) with all blocks in a file 

the same size except for the last block. Blocks belonging to a file are 

replicated for fault tolerance. The block size and replication factor are 

configurable per file. Files in HDFS are write-once and can have only one 

writer at any given time. 

2.3 MapReduce 

MapReduce (implemented on Hadoop) is a framework for parallel 

distributed processing large volumes of data. In programming using 

MapReduce, it is possible to perform parallel distributed processing by 

writing programs involving the following three steps: Map, Shuffle, and 

Reduce. Figure 2 shows an example of the flow when Map and Reduce 

processes are performed. Because MapReduce automatically performs 

inter-process communication between Map and Reduce processes, and 

maintain load balancing of the processes. 
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Figure 2. Processes performing the map and reduce phases 

1. Map concept of data processing 

The Map function takes a key-value pair <K, V> as the input and 

generates one or multiple pairs <K′, V′ > as the intermediate output. 

2. Shuffle concept of data processing 

After the Map phase produces the intermediate key-value pair or 

key-value pairs, they are efficiently and automatically grouped by key by 

the Hadoop system in preparation for the Reduce phase. 

3. Reduce concept of data processing 

The Reduce function takes as the input a <K′, LIST V′ > pair, where 

“LIST V′ ” is a list of all V′ values that are associated with a given key K′. 

The Reduce function produces an additional key-value pair as the output. 

By combining multiple Map and Reduce processes, we can 

accomplish complex tasks which cannot be done via a single Map and 

Reduce execution. Figures 3 and 4 respectively show the key-value data 

model and a Wordcount example of MapReduce. 

 

 

 

 

Figure 3. Key-value data model of MapReduce 

map: <key, value> ⇒ list <key’, value’> 

shuffle: list <key’, value’> ⇒ {<key’’, list(value’’)>} 

reduce: {<key’’, list(value’’)>} ⇒ list(value’’’) 
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Figure 4. Wordcount example of MapReduce 

2.4 Hadoop Streaming 

Hadoop is an open-source implementation of the MapReduce 

platform and distributed file system. The Hadoop system is written in 

Java. Hadoop Streaming is a utility that comes with the Hadoop 

distribution and that can be used to invoke streaming programs that are not 

written in Java (such as Ruby, Perl, Python, PHP, R, or C++). Using this 

utility, we can execute database programs written in the Ruby 

programming language. The utility also allows the user to create and run 

Map and Reduce jobs with any executable programs or scripts as the 

mapper and the reducer. Figure 5 shows an example of an execution of a 

program when using Hadoop Streaming and a description of the Map and 

Reduce functions in the Ruby programming language. Key-value pairs can 

be specified to depend on the input–output formats. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Usage example of the options for Hadoop Streaming using the 

Ruby programming language on Hadoop 

 

./bin/hadoop jar contrib/hadoop-0.20.2-streaming.jar 

-input    myInputDirs     [HDFS Path] 

-output   myOutputDir    [HDFS Path] 

-mapper  map.rb     [map program file path] 

-reduce   reduce.rb   [reduce program file path] 

-file      filename  [local file system path] 

-cacheFile fileNameURI [URI to the file that you have already uploaded to HDFS] 

-inputformat JavaClassName    [Input format should return key/value pairs of Text class] 

-outputformat JavaClassName   [output format should return key/value pairs of Text class] 

//map.rb 
def map(key, value, output, reporter) 
  # Mapper code 
end 
//reduce.rb 
def reducer(key, value, output, reporter) 
  # Reducer code 
end 
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3. VIDEO DATABASE PROCESSING ON HADOOP 

3.1 MapReduce for Video Database Processing 

The Map and Reduce functions of MapReduce are both defined with 

respect to data structured in key-value pairs. In short, we can perform 

distributed processing by creating key-value pairs in MapReduce form. 

However, for unstructured data such as video data, it can be assumed that 

it is more difficult to create key-value pairs and perform the processing 

than processing structured data. 

In this experiment, in order to use the Ruby programming language, 

we utilize an extension package of Hadoop, namely Hadoop Streaming. 

With a view to performing parallel distributed processing on MapReduce 

forms, we need to create programs to be used as Map and Reduce 

functions in the Ruby programming language. Video database processing 

is performed by splitting the data in a video database and creating 

key-value pairs. For example, the frame number can be used as a key for a 

video frame. In the case of parallel processing of a video frame, the video 

frame is divided into multiple parts, and the part numbers can be the keys 

(identifiers) for these different parts. Sorting is carried out using the key 

number, and joining separated frames or separated parts is performed by 

the Reduce function. Figure 6 shows an example of processing flow using 

MapReduce. In this figure, each video frame is divided into four parts, and 

each part has a unique key number. 

Figure 6. Image processing flow using MapReduce 

3.2 MapReduce Processing of Video Database 

We implemented the following video database processing steps using 

Hadoop Streaming. Multiple sequential video frames are input, and image 

processing is performed for each video frame. We implemented a Map 

function for image processing. The input of the Map function is a single 

video frame, and the Map function produces one video frame as output. 
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We process video frames in parallel with the slave servers, which use 

HDFS. The video database is stored in HDFS. Each Map process also 

outputs to HDFS. Figure 7 shows an example of video database processing 

flow using the Map function and HDFS. 

Figure 7. Sequential video frame processing flow using Map and HDFS 

4. EXPERIMENT 

In the experiment, we use a video database that contains a set of 

video data collected in the area of Nishi-ku in Fukuoka City and Usuki in 

Oita Prefecture. 

The experimental environment is as follows: 

 OS: Ubuntu 11.04, CPU: Intel core i5 2.8 GHz, Memory: 4 GB. 

Results of image processing are output to 

HDFS. 

Multiple sequential video frames are input, 

and image processing is performed for each 

video frame. 
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The software versions are as follows: 

 Hadoop-0.20.2, Ruby 1.8.7, and Octave 3.4.2. 

The image size is as follows: 

 640 480 pixels. 

The experiment is described as follows. We first create a grayscale 

image of the original image in parallel by using MapReduce. Then, 

features of the grayscale image are extracted in parallel by using 

MapReduce. Next, we recall a sub-program written in the Octave language 

(a high-level interpreted language used for mathematical model fitting, 

signal processing, and image processing) from a Ruby program. 

We configured the MapReduce system as a pseudo-distributed mode. 

Hadoop is composed of a master server which manages slave servers, 

which perform the actual image processing. Master and slave servers 

actually run on the same server for this configuration of the MapReduce 

system (pseudo-distributed mode). The number of copies of video data is 

set to 1. The parallel processing of the video database using Hadoop 

Streaming is distributed over all of the cores of a CPU of a single 

machine. 

4.1 Grayscale Images Created by MapReduce 

In this experiment, we create a grayscale image of the original image 

in parallel by using MapReduce. First of all, we perform the processing of 

dividing the image in the Map tasks. Next, the Reduce task accepts the 

processed images from the Map tasks, combines the divided image, and 

outputs the result image to HDFS. 

We used grayscale creation as an example of image processing using 

MapReduce. In making the grayscale image from the original, we convert 

the RGB values to the NTSC color space as an yiqmap that contains the 

equivalent NTSC luminance (Y) and chrominance (I and Q) color 

components as columns, where Y, I, and Q are defined as follows: 
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    (1) 

Here, we specify the number of Map tasks as 4. Figure 8 shows the 

results of JobTracker when processing the video database, and shows that 

the number of Map tasks is 4 and the number of Reduce task is 1. Figure 9 

shows the results given by a Hadoop Web interface program when 


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processing image files with MapReduce. Here, we specify the output file 

on HDFS when we perform the re-combination of the 4-divided image 

from usuki-20110430.avi-000001_divide1.jpg to 

usuki-20110430.avi-000001_divide4.jpg. Figure 10 shows the Task ID, 

the processing time from start to end, and the status of each TaskTracker 

on Hadoop in the experiment. Due to perform considerations, the 

maximum number of slave processes allowed to be executed is set to be 2, 

and then the tasks are performed in pairs, for example, 

task_201201302155_0004_m_000000 and 

task_201201302155_0004_m_000001, followed by 

task_201201302155_0004_m_000002 and 

task_201201302155_0004_m_000003. As a result, we confirmed a 

processing time of 4 sec and that two tasks can be performed at the same 

time in parallel for this experimental setup. 

Figure 8. Results of JobTracker when processing an image 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Results shown by a Hadoop Web interface program during 

grayscale video image creation using MapReduce 
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Figure 10. Status of each TaskTracker on Hadoop when processing image 

files with MapReduce 

4.2 Feature Extraction of Video Images by Using 
MapReduce 

In this experiment, we create video images that depict extracted 

features in parallel by using MapReduce. First of all, we input multiple 

video frames and perform feature extraction processes using Map function 

in parallel. In the parallel processing, multiple slave servers use a video 

database stored in HDFS and output the processing results to HDFS. 

For the process of extracting features of sequential video frames after 

multiple video frames are input to slave servers that execute a Map 

function, only the Map function is used to output a significant number of 

features for each image. First, when a pixel of a video frame contains a 

significant amount of features, such as corners and edges, a new pixel is 

generated in the output image, and the pixel value is set to be a feature 

value. Otherwise, a black pixel is generated in the output image. Let F and 

L be the original video frame and a smoothed image of F by a Gaussian 

distribution, respectively. We denote the individual pixels of L as l(i, j). 

Then, in order to perform feature extraction, we use the Prewitt filter, 

which detects edges and lines in an image. In this process, the filter 

obtains the horizontal and vertical contours. The filter coefficient is 

assumed to be a 3 3 matrix, from which an auto-correlation matrix is 

created. The image L is differentiated once in each of the horizontal and 

vertical directions, where the notation li and lj is used for the respective 

derivatives. In addition, A, B, and C are defined as follows: 
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The auto-correlation matrix, denoted by M, is given in terms of A, B, 

and C as follows: 


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Then, the feature points of the Harris corner detection are extracted 

using the value c(i, j) of each pixel
5, 6

: 

2))(tr()det(),( MkMjic     (4) 

Det and tr represent the determinant function and the sum of the 

diagonal elements, respectively. Here, k is an adjustable parameter and is 

generally taken to be within the range 0.04 to 0.06. In our experiment, k is 

taken to be 0.04. In addition, the eigenvalues λ1 and λ2 are obtained as 

follows: 

2

21)det( CABM   , BAM  21)(tr    
(5) 

Threshold T is used to decide which c(i, j) are used in the output 

image. A pixel value in the output image is set to be 0 if c(i, j) < T. The 

absolute value of c(i, j) as calculated from the two eigenvalues λ1 and λ2 is 

denoted by R(i, j). In addition, the maximum and minimum values 

max(R(i, j)) and min(R(i, j)) are normalized to 0 and 255, respectively, in 

the output image. The pixel values in the output image have a 256-level 

range from 0 to 255. Using this method, we create a mask image with a 

threshold using a feature extraction image. Figure 11 shows examples of 

the original image (left), feature extraction image (center), and mask 

image (right). The feature extraction image is the result of processing the 

original image using the Harris corner detection, and the mask image is 

the result of processing the feature extraction image taking advantage of 

the threshold T. 

Figure 11. Examples of an input image, feature extraction image, and 

output image. The output image is used as the mask image 
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For the Map processing, we input a sequence of eight images and 

perform the process. As a result, we output eight corresponding image 

files. The output image files are used for masking the input image. Here, 

we specify the output file on HDFS when we perform image processing of 

eight images, for example, as the eight images 

usuki-20110430.avi-000001jpg through usuki-20110430.avi-000008.jpg. 

Figure 12 shows the MapReduce status in halfway through the execution; 

at this point, six of the eight tasks have been performed and 25% of the 

processing has been completed. Figure 13 shows Task ID, processing time 

from start to end, and status of each TaskTracker on Hadoop. Due to 

perform considerations, the maximum number of slave processes executed 

is set to be 2, two tasks are performed, such as 

task_201111161359_0007_m_000000 and 

task_201111161359_0007_m_000001, and then the eight tasks are 

performed in pairs in parallel, for example, 

task_201111161359_0007_m_000000 and 

task_201111161359_0007_m_000001, followed by 

201111161359_0007_m_000002 and 

task_201111161359_0007_m_000003. As a result, we achieved a 

processing time of 2 min 27 sec. Figure 14 shows a MapReduce status 

report used to confirm the successful termination of MapReduce tasks. 

Here, we specify that the number of Map tasks is 8 and the number of 

Reduce tasks is 0. 

Figure 12. MapReduce status in the middle of execution 
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Figure 13. Status of each TaskTracker on Hadoop 

Figure 14. MapReduce status after termination of execution 

The total number of Map tasks is set to be 8, and the maximum 

number of slave processes executed is set to be either 2, 4, 6, or 8 in our 

experimental test. The creation time of the mask image was 2 minutes and 

27 seconds when we performed the slave process in parallel using 2 

processor-cores. Without MapReduce, processing time of the same task 

averages 2 minutes and 6 seconds, implying a favorable difference of 

about 21 seconds. We assume that this difference is due to the processing 

time for the input–output of video database on HDFS, the access time of 

external programs written in the Octave and Ruby programming 

languages, and the latency time of performing the Map processing. Figures 

15 and 16 show respectively the total processing time and the processing 

time of each TaskTracker when a sequence of eight images is processed 

by using MapReduce in pseudo-distributed mode. Figure 17 shows an 

example of a part of the program code for feature extraction of video 

images using MapReduce. 
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Figure15. Versus the maximum number of slave processes 

Figure16. Processing time for each TaskTracker for different numbers of 

Map tasks performed simultaneously 

5. SUMMARY AND FUTURE WORK 

In this paper, we describe using a video database of video collected 

with a video camera. In an experiment, we processed sequences of video 

frames with MapReduce to create grayscale images and extracted some 

features of the video images. In the process of creating the grayscale 

images, each video frame was divided into multiple parts. In the 

extraction, frame numbers were used as the key numbers to extract some 

features of the video images. In future, it is necessary for us to build a 

distributed environment that combines multiple machines, conduct 

large-scale experiments involving sequential video images, evaluate the 
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performance speed of the implementation with MapReduce, and verify the 

efficient key-value pairs. 

 

Figure17. Example program for feature extraction of video images using 

MapReduce 
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