
International Journal of ElectronicCommerce Studies

Vol.9, No.2, pp.209-238, 2018

doi: 10.7903/ijecs.1651

PERMISSION WATCHER TOOL: A SANDBOX
TOOL-BASED STATIC AND DYNAMIC ANALYSIS

FOR ANDROID APPS

Er-rajy Latifa
Cadi Ayyad University

Av Abdelkrim Khattabi, B.P. 511 - 40000, Morocco
Errajy.latifa@gmail.com

El Kiram My Ahmed

Cadi Ayyad University
Av Abdelkrim Khattabi, B.P. 511 - 40000, Morocco

kiram@uca.ma

ABSTRACT

Android security has become a very important issue with regard to

mobile phone development: Android gives great freedom to developers to

create and publish their apps for free in the PlayStore. The security

mechanism of Android is based on an instrument that gives users the

information about permissions that the application requests before installing

it. This authorization system provides an overview of the application, and this

can help to raise awareness of its risks. However, standard users still do not

have enough information to understand clearly these requested authorizations

and their implications on their security. In this article, we present a tool called

“Permission watcher” that combines dynamic and static analysis. Our

proposed tool allows users to install any application with only the necessary

permissions instead of accepting all permissions requested or cancel the

installation completely.

Keywords: Permissions; Applications; Security; Tool

1. INTRODUCTION

The Android market
1
 has grown considerably since its inception in

2008. Application developers may be forced to develop applications for

monetary gain by billing through ad revenue. In fact, developers can easily

publish their applications in the Google PlayStore. On the other hand, the

mailto:kiram@uca.ma

210 International Journal of Electronic Commerce Studies

online documentation for the Android API is incomplete, which makes the

process of assigning an application more complicated
2
.

To notify users of the privacy and security of their sensitive data when

installing an application, Android uses mandatory access control (MAC) as

a permissions system
3
. At the time of installation, an application must

request authorization to access system resources (such as location, Internet,

cellular network, etc.), and the user either accepts all the requested

permissions or cancels the installation, since it is not possible to accept or

deny access privileges selectively. Thus, many users simply accept these

terms of use without taking into account their implications on their personal

data. Such action can be very dangerous for their private data
4
. For example,

if an application has granted certain critical permissions such as Internet

permissions, this application can easily control communication with remote

servers, and if it has access to the camera as well, it can send the user’s

personal pictures to any server on the Internet.

In May 2014, Google updated the Play Store to simplify the display of

permissions for the user and help him or her to better understand their

meanings. Google grouped the permissions by categories, and as a result,

from over 150 permissions, we obtained a dozen categories, including one

“other”, which includes everything that does not fit elsewhere
5
.

With the old system, in each update of the application, if the developer

adds a new authorization, the Play Store displays it to the user who must

accept it. With the new system, the developer can, for example, add the

ACCESS_SUPERUSER permission that allows him or her to take control

of all the phone's functions and storage, since it belongs to the category

"other"
6
.

In this paper, we present the Permission Watcher tool, which offers

three mean stages: static analysis, dynamic analysis, and applications

repackaging. After the user installs Permission Watcher on his or her

Android device, the tool immediately inserts instrumentation code into

arbitrary Android applications. The monitoring code then intercepts an

application's interaction with the system in case of updates to enforce

various security policies by watching these updates and the permissions that

may be added without the user authorization.

The main advantage of the Permission Watcher tool is to enable the

user to install an application with only the necessary permissions instead of

accepting all the requested items or completely canceling the installation.

Er-rajy Latifa, and El Kiram My Ahmed 211

2. BACKGROUND

2.1 Android permission system

Android controls access to system resources by requiring permissions

that the user must approve before authorizing the application installation

using a bidirectional process. First, the developer defines the necessary

permissions that are prerequisite to running the functionality of the

application. Secondly, to start the installation, the user must approve without

exception all the permissions required by the application
7
. The permissions

requested by applications are divided into four levels:

(1) Normal - this level contains the permissions that protect access to

API calls. These permissions are not dangerous, since they cannot cause

actual harm to the user (for example, SET_WALLPAPER controls the

possibility of modifying and changing the user's background) and of course,

when the applications request them, they are automatically granted.

(2) Dangerous - this type of permissions controls access to API calls

that are potentially dangerous, such as those related to the expense or

collection of sensitive and/or private information; for example, dangerous

permissions that have the purpose of sending text messages, reading the

contact list, calling numbers, and opening Internet applications without the

user's awareness.

(3) Signature - These permissions regulate access to the most

dangerous privileges, such as the ability to control the backup process or

remove application packages. They are automatically granted to an

application when this application is developed by the same person, which

means that it is signed with the same certificate. The purpose of this level is

to allow applications that are linked or they are part of a suite to share data

between them.

(4) Signature/System –This level shares the same features as Signature,

except that the system image automatically obtains these permissions. This

level of permissions was only created to be used by device manufacturers.

2.2 Application Installation Deconstruction

The Android Package Kit (APK) contains all the application code such

as Dalvik EXecutable (DEX) file that runs on a Dalvik virtual machine,

resources (not executable like graphics, multimedia files, user interface

components, etc.), assets, certificates, and the manifest file. A user or

developer can install an APK file directly on a device (i.e., not via a network

upload) using a computer or communication program such as AdB or via an

212 International Journal of Electronic Commerce Studies

application file manager in a process called sideloading. The APK file

components are digitally marked with the developer's signature key.

Figure 1.Abstract model of the Android installation process for an

application package (apk)

The certificate by the developer may be self-signed and is contained

within the package of application
8
. Any developer can create and distribute

applications (even those who do not have a Google account) in the Google

Play Store, through developer websites (side loading), or through third-party

markets such as Appstore or Amazon. The absence of control over

applications distributed through the Play Store shows the importance of

enforcing the security measures within the Android operating system

process. During the installation of a new application, permissions are

approved prior to installation; however, the rest of the process remains the

same. At the beginning, the application package validity is verified: the

system ensures that the Android application package, since being signed,

has not been corrupted or modified and that it comprises a valid certificate

for the signing key. Android then decides whether the application should

replace an existing application or become a new installation if the

application being installed requires the same permissions and package

attribute in the manifest file as another presently installed application. After

that, Android will consider the installation like an update. Therefore, the

Er-rajy Latifa, and El Kiram My Ahmed 213

certificate (or group of certificates in the case of being signed by multiple

keys) is matched with the certificate(s) of the application already installed.

If both applications share the same key(s), at that point, the presently

installed application is removed and the new application is installed in its

place with preserving all user data from the removing one. Otherwise, the

new application is installed as a primary installation. Afterward, Android

should assign a UserID to the application (Figure 1). In this case, the UserID

of previous application is used. If it is an initial installation, Android verifies

whether the application manifest contains the directive sharedUserId. If it is

so, Android searches for any other installed applications using the same

key(s) for the signature that also have in their manifest a specified

sharedUserId. If such applications are found, the application is assigned

with the same UserID. Then, a new UserID is made. Lastly, permissions

should be assigned to the UserID. The user is invited to approve the

permission assignments after reviewing them before the application

installation. In the case that a sharedUserId is not used, permissions

recorded in the application manifest are assigned to the UserID. Once the

sharedUserId is used, the UserID is assigned all permissions associated in

the application manifests that share the UserID. If the application is

updating an already installed application, the permissions listed in the

updated application's manifest are assigned to the UserID
9
.

3. PERMISSION WATCHER TOOL

3.1 Description

The Permission Watcher tool is a sandbox-based dynamic and static

analysis that evaluates Android application permissions during installation

time through several levels after using the APKtool
24

, which is integrated in

our proposed tool in order to extract the manifest file from the APK file.

Figure 2 presents an example of the manifest extraction.

In addition, we used Java reflection
25

 to get all API calls contained in

the manifest file, which will be used in the static analysis phase. Generally,

before installation, each application goes through two analysis levels: static

and dynamic. The biggest advantage of the Permission Watcher tool is that

it enables the user to install an application with only the necessary

permissions instead of accepting all the requested permissions or completely

canceling the installation.

214 International Journal of Electronic Commerce Studies

Figure 2.example of manifest extraction

3.2 How Permission Watcher work

The Permission Watcher tool has three major processes, as shown in

Figure 3: static analysis, dynamic analysis, and applications repackaging.

After the user installs Permission Watcher on his or her Android device, the

tool immediately inserts the instrumentation code into arbitrary Android

applications and the monitoring code that intercepts the application

interactions with the system in case of updates in order to enforce the

various security policies by watching these updates and the permissions that

may be added without user authorization.

Static Analysis: The first thing that the tool does during the static

analysis phase is to scan the Android application package (APK) for special

patterns (for example, Runtime.Exec ()), which is used to classify the

application to facilitate and speed up the reading of the database. Our

implementation of static analysis is run offline, which makes it light enough

to run on the Android device. However, dynamic analysis requires

emulation on a more powerful machine.

When the user wants to install an application for the first time, the

Permission Watcher tool preforms a static analysis that compares the

permissions requested by the application with a database that contains that

Er-rajy Latifa, and El Kiram My Ahmed 215

lists the permission requirements for every API calls and permission

specifications for more than one version of Android to make a clear decision

about what kind of permissions are requested by the application (necessary,

unnecessary, or dangerous) as illustrated in Figure 4. In fact, this database

contains almost all API calls that can be required by Android applications.

We created one-to-many permission-API mappings manually by

parsing the API documentation and inserting into the database several

functions and permissions upon which the application depends in order to

create a permission mapping which was quite complex in general.

For example, when using and instantiating a Bluetooth connection that

requires BLUETOOTH permission, which is a fairly simple example, the

LocationManager class cannot be instantiated directly, and the permission

varies based on the constants used in the " instantiation.

Figure 3. Permission Watcher Tool operating scheme

216 International Journal of Electronic Commerce Studies

For example, if the application wants to use GPS_PROVIDER with

LocationManager, it requests the ACCESS_FINE_LOCATION permission,

and it must request permission for the ACCESS_COURSE_LOCATION in

order to use the NETWORK_PROVIDER with LocationManager.

The Permission-API database is created as a priori and is simply loaded

the first time the Permission Watcher tool is executed. Once created, the

database should require little maintenance, since each database table is

particular to an Android API revision, which is static. The only maintenance

would be the result of an error or omission in the database itself. The

existing documentation is inconsistent, which complicates the

Permission-API database creation. Furthermore, in this static analysis, we

used a method that examines the set of permissions declared by the

application, especially those related to personal information such as

credentials data, contacts, calendar events, email, and SMS/MMS. Then, the

tool determines the permission requirement for every API by the application

in order to produce a mapping of permissions that the application may need

for its function.

Figure 4. Extract of database used in static analysis

In this analysis, we exploited Android functions and components such

as Binder, Intents, Content Providers, and permission check functions that

check for the presence of permission in order to increase the performance of

this static analysis that consists of three phases:

(1) Decompression: As we mentioned before, an Android application is a

compressed file (ZIP). When it is not compressed, its content is divided

into three main parts:

Er-rajy Latifa, and El Kiram My Ahmed 217

 AndroidManifest.xml - An XML file that contains the

application meta-information, such as descriptions, security

permissions requested, etc.

 classes.dex – A single file that holds the complete bytecode

interpreted by Dalvik VM.

 res / - A folder composed of files defining the layout, language,

etc.

(2) Get the starter name: In this step, the tool extracts the main activity

called "launchable activity" from the manifest file, which is not only

needed to identify the application, but is also important later for dynamic

analysis because it serves as an entry point for the user interface of the

application.

(3) Decompilation: The classes.dex file is converted into human format

using Baksmali.
26

 This file holds the actual bytecode of the application.

The decompilation produces a Java typical hierarchy of folders

containing files with a pseudo-code that facilitates the analysis.

All permissions found are saved in a log file to be used in dynamic

analysis.

Beside determining what permissions will be granted at the time of

installation, additional information is extracted to better identify the

malicious applications. This applies especially to the usage of:

 Native Java interface, which can be used to dynamically load

native libraries.

 Sytem.getRuntime (). Exec (...), which can be used to generate

processes of indigenous children and surpass the normal

application life cycle.

 Reflection, which can be used to bypass API restrictions.

 Services and provision of the IPC, which can drain the battery

or overload the CPU of the device

Dynamic analysis: This analysis is based on an Android virtual device

based on QEMU
27

, similar to the one provided with the Android SDK.

In this work, the application is installed in the standard Android

emulator from the Google Android SDK. Once the application installation is

complete, Monkey Tool
28

,a program installed inside the emulator, generates

a set of random pseudo-streams that present the user events such as clicks,

218 International Journal of Electronic Commerce Studies

keys, gestures, and a number of system-level events. The Monkey was

mainly invented for stress testing applications. Our tool is placed in the

kernel space and shakes the system calls for logging. The dynamic analysis

result helps us to record application behavior at the system level. The

resulting log file will then be summarized and reduced to a mathematical

vector for better analysis. The kernel module ensures that every occurrence

of a system call is saved with the required permission. This ensures that the

registration of a complete system state is fulfilled and that no malicious

activity can be hidden. An application system call log is stored in a separate

file.

Preparation and start of the emulator: As stated previously, we

developed a mobile device emulator similar to the emulator Android SDK

run on normal computers. This means that it supports Android virtual device

(AVD) configurations used in applications testing. It removes all the

hardware and software features of a typical mobile device, except phone

calls. The running application inside the emulator can exploit the services of

the Android platform to call other applications such as network access,

provide audio and video playback, store and retrieve data, inform the user,

make transitions and graphic themes, simulating latency effects, and packets

on the data channel, receiving SMS messages or phone calls.

The purpose of dynamic analysis is to examine the system state

changes that occur when a given application is run. To fulfill this aim, the

emulator has a policy called log-only that does not actively intercept the

system state change. We have developed a loadable kernel module (LKM)
29

that applies the policy set by the sandbox environment. Insertion of the

LKM into the running kernel of the Android device emulator is done with

the Android Debugging Bridge (ADB)
30

that accompanies the Android SDK.

Once the LKM is loaded, the generated output is sent to a log file.

Install APK and start Monkey: We used ADB to install the APK of

the application inside the emulator. The ADB copies the APK file into the

emulator, and then it runs PackageManager, which presents as essential part

of Android. Finally, ADB installs the application inside the virtual emulator.

This means that the APK will be decompressed and copied into the specified

directories. After installation, the application is started automatically.

Get system call logs: Inside the emulator, the monkey simulates

human interaction with the application being examined.

During the execution time for the monkey, there are exactly 500 events

generated with a silence of 1000ms between each two events. When the

monkey is finished, the mobile device emulator process is killed and the

Er-rajy Latifa, and El Kiram My Ahmed 219

used AVD setup that was created for the running application is deleted.

This emulator uses an API tracer to monitor how Java application

components communicate with the Android Java framework, how its native

components interacts with the system, and how its Java components and

native components communicate through the interface JNI. The native

instruction tracer and the Dalvik instructions tracer embedded in the

emulator's code source examines how a malicious application (based on the

necessary and dangerous permissions obtained after the comparison between

the log file and the one obtained from the Static analysis) behaves internally

by recording detailed instructions.

The Dalvik Tracer stores bytecode statements for malicious Java

components, and the native instruction tracer stores machine-level

instructions for native components (if any). Taint tracking observes how the

malicious software obtains and discloses sensitive information (eg, GPS

Location, IMEI, and IMSI) using the spoofing analysis component in the

emulator. This virtual environment uses a method called “API hooking” in

order to monitor the behavior of the analyzed application by intercepting

function calls. These hooks are generally inserted during runtime. However,

they can also begin working before the application execution. The physical

change can accomplish hooking with binary rewriting or changing the API

to monitor function calls before execution. This way, the emulator can easily

detect if the application has any bad effects on user data.

The following scheme abstracts in brief how the emulator works

(Figure 5):

Figure 5. virtual emulator work

220 International Journal of Electronic Commerce Studies

At the end of the dynamic analysis, the Permission Watcher Tool

receives two logs files. It examines first the result of the code analysis. If the

application contains malicious code, its installation is automatically aborted,

and a popup window is shown to the user explaining why the application

installation has been cancelled. Otherwise, the Permission Watcher Tool

examines the permission result if there are unnecessary or dangerous

permissions requested by the application, and then the tool sends the user a

notification that invites him either to allow application installation with only

the necessary permission or to cancel the installation completely. In the case

in which the user chooses to continue the installation, the tool repackages

the application in order to delete the unnecessary permissions before

allowing its installation.

Application repackaging: In this process (Figure 6), we have to delete

the unnecessary and dangerous permissions from the application manifest

file.

Figure 6. Application repackaging steps

Each application goes through five steps before it is ready to be

installed on the user’s device, because the code in the APK file is so difficult

to read by a human, since it contains Dalvik bytecode (Dex format):

extraction, decoding, modifying, encoding, and packing. Figure 7 shows a

rough overview of the process used to modify an existing .apk file. The

purpose of the extraction and decoding steps is to transform an .apk file into

an easily editable form. The modification step is an application-specific step

which involves reading and modifying the bytecode. During the encoding

and packing steps, a new .apk file is created from the modified files.

Er-rajy Latifa, and El Kiram My Ahmed 221

Extraction: The extraction step involves separating an .apk file into

multiple files. Since .apk files are based on the JAR specification, they can

be extracted with any zip-based compression utility such as winZip
31

. As

part of the extraction process, the META-INF directory is deleted. This

directory contains various files used to verify the JAR integrity. Since the

manifest file, which is among the archive contents, will be edited, the files

inside META-INF directory will need to be recreated.

Decoding: During this step, human readable versions of the binary

files are created. So, files with a .dex extension containing Dalvik bytecode

are converted into an equivalent text format using Baksmali disassembler.

This tool disassembles a .dex file into multiple .smali files. Each file is a

single java class. Android uses a binary XML format to speed up the

application loading process. Therefore, before any reading or modifying is

completed, these XML files must be converted into an equivalent text

representation using the AXMLPrinter2 utility
32

.

Modifying: In the modification step, we only modify the manifest file

by deleting the unnecessary permissions described in the log file we got

from the dynamic analysis step. For the Java code source generation, a

standard Java decompiler called dex2jar tool is used.

Encoding: This step is similar to the decoding step. First, all modified

manifest.xml file must be covered back into its binary formats. Then, a new

classes.dex needs to be created from the modified .smali files. This step is

performed using the smali assembler, which assembles a directory with

all .smali files into a single .dex file.

Packaging: This step is based on the standard Android build process
33

.

Firstly, application files, such as assembled .dex files, .xml binaries, and

application elements, are stored in a zip archive. Android requires that all

applications be cryptographically signed with an RSA certificate. Android

uses these signatures to verify the integrity and the author of the archive.

The Android installation process will reject all unsigned .apk files. The

process of signing an .apk file is based on the JAR signature process
34

.

Then, the jarsigner
35

 utility is used to sign the modified .apk file with RSA

certificates. Self-signed certificates are valid only during development. The

final packaging step aligns the contents of the .apk file to a 32-bit limit. Zip

alignment is performed with the zipalign
36

utility.

222 International Journal of Electronic Commerce Studies

Figure 7. Typical coding and packaging script

This restructuring allows Android to directly memorize the archive

sections to improve their performance. Although this step is not required,

official documentation recommends aligning zip to all .apk files. Figure 6

shows a typical coding and packaging script. The script copies all the

application's resources to a new temporary build directory. A close utility is

used to create a new .apk file from the temporary directory. The archive is

then signed with a private RSA certificate. Finally, the signed .apk is aligned

with a 4-byte boundary with the zipalign utility.

4. EXPERIMENTS

To proof the correct working of the whole system, we analyzed an

Android malware family, assuming that the permissions requested by these

applications can be used to detect malware families.

In this test, we have specifically targeted the DroidDream
37

 family as a

test case to see if we can identify malicious software in this family as

malicious depending on the requested permissions. DroidDream appeared

for the first time in 2011 in the Google Play store, and there are several

versions of this malware, which gave us a "family" of malware that has

evolved and expanded in functionality from the basic version. Although all

iterations have a similar name, they are completely different in their

malicious techniques and objectives. Among DroidDream versions, there is

a family called DroidDreamLight
38

 that does not need user intervention to

run. This malware successfully obtains root privileges on the user device

and uses it to collect and send the user's personal information to a remote

Er-rajy Latifa, and El Kiram My Ahmed 223

server. Then it makes the victim download and install new malicious

applications.

We worked with the teen DroidDream family obtained from the

Android Malware Genome Project
39

. Table I presents the selected family.

4.1 Static analysis results

Permissions: As we explained before, the goal of static analysis is to

identify permissions by examining the AndroidManifest.xml file. It begins

by examining the permissions in the DroidDream dataset to determine the

frequency of each occurrence. This analysis concentrates especially on the

permissions that appeared in a super majority of DroidDream's APK files.

By looking at the log file, we found that the following permissions were

retrieved:

 CHANGE_WIFI_STATE - This permission allows the application to

change the state of WiFi connectivity.

 ACCESS_WIFI_STATE - This permission allows the application to

access information about the WiFi network.

 INTERNET - this permission permits the application to access and

open the network sockets.

 READ_PHONE_STATE - This permission permits the application to

access the phone state, but it isread-only.

 READ_CONTACTS and WRITE_CONTACTS - These two

permissions allow the application to read and write the contact list

found in the mobile phone.

 READ_LOGS - This permission permits the application to read log

files of low-level system.

 ACCESS_NETWORK_STATE - This permission permits the

application to access the network information.

The permissions found were saved in a log file and sent to the virtual

emulator for the comparison with the one obtained after preforming the

dynamic analysis. This step is more complicated than the static analysis and

gives more detail about the nature of the analyzed application.

224 International Journal of Electronic Commerce Studies

Table 1. Malwares family analyzed

Family Description

DroidDrem Botnet, it gained root access

FakeInstaller Server-side polymorphic family

Plankton It use class loading to forward details

DroidKungFu It installs a backdoor

GinMaster Malicious service to root devices

BaseBridge It sends information to remote server

Adrd It sends info to premium-rate numbers

Kmin It sends info to premium-rate numbers

Geinimi First Android botnet

Opfake First Android polymorphic malware

4.2 Dynamic analysis results

By executing our set of DroidDream applications in the virtual

emulator, we obtained some very interesting information about the entire

code, including the usage permissions requested. That information helps us

to understand malware behavior.

Services: A service is simply an application component that is capable

of running long-term applications in the background without providing an

interface to the user, and it is also capable of continuing to run in the

background, even though the user closes the application and switches to

another application.

In the analysis result, we found that 15 instances of DroidDream uses

two services known as malware added to the Android. These services are

services.com.android.root.AlarmReceiver and com.root.Setting. Figure 8

provides more information below.com.root.Setting decrypts a byte buffer

using an XOR with a predefined key in the adbRoot class. The server IP

address and its URL link are already decrypted in the byte buffer. This

server is used for the data publishing on the infected phone on which the

malware is installed in XML format using an HTTP POST request.

Figure 8. Malware services found

In addition to the malicious services added to trojanized packages,

there is also a set of files added to the package assets. Assets include 3

Er-rajy Latifa, and El Kiram My Ahmed 225

native ARM applications, two are privilege escalation exploits and an

application that allows it to execute shell commands as root.

If the exploit was successful, the Trojan attempts to install an

additional package included in the malware assets in the form of sqlite.db. It

contains a code that allows it to send extra information about the device

victim and to download additional content.

Function names: We have programmed the virtual emulator in such a

way that it automatically excludes the onlick, onCreate, and onDestroy

functions, as they are generally exploited by Android applications, which

does not show any potential malicious activity. The emulator also does not

consider functions with obscene names: a, b, c, d, e, etc. which leaves the

emulator eleven functions by which to check and detect their existence in

the supermajority of code (Figure 9 illustrates an example of the functions

detected by dynamic analysis). For example, the emulator can detect the

following functions:

 getIMEI, getIMSI and getRawResource allow the application to

collect user information.

 Installsu gains root permission on the victim device.

 sPackageInstalled examines whether an additional packet is installed

or not.

 onReceive collects additional information on the network.

 PostUrl is dangerous because it can publish a URL.

 changeWiFiState and restoreWiFiStateconnect to WiFi without the

knowledge of the user.

 removeExploit raises a red flag for its ability to exploit user

information.

226 International Journal of Electronic Commerce Studies

Figure 9. Example of functions detected by dynamic analysis

In the DroidDream samples that the emulator analyzed, the scan result

shows that malware cannot be started automatically, so it requires that the

user manually launch the infected application. Once the user runs the

application, the DroidDream family transfers to a remote command and

control server to access the user's sensitive information that includes the

following:

 IMEI

 IMSI

 Device model

 SDK Version

The DroidDream family configuration allows it to perform at least one

successful check with the command and control server that will respond and

recognize the presence of malicious software on the infected user's device.

Examination of the code by the emulator shows that the authors of the

DroidDream family configured the malicious software in order to ensure

Er-rajy Latifa, and El Kiram My Ahmed 227

that the device is not yet infected by another variant of DroidDream. Then,

the malware will not infect the device again if it is already infected. Analysis

of the code revealed a very dangerous detail; DroidDream contains

malicious code that allowed it to do most of its malicious work between 11

pm and 8 am, because most people sleep during that interval of time, and

phones are less often used which makes it very difficult to detect that

abnormal applications are running on the infected device.

Comparison of two log files: The result of the two log files

comparison shows that almost all teen malware families do not need any of

the requested permissions; they are only used to perform malicious

activities. Our set of DroidDream versions collects users’ IMEI and IMSI

and sends them through the URL network socket connection.

Figure 10. How DroidDream collects users’ IMEI and IMSI, and sends

them through URL network socket connection

This is a behavior of personal information stealing. URL network

socket connection needs INTERNET permission, which is too conspicuous

and may be easily caught by traditional methods. Figure 10 shows how

DroidDream malware family obtains IMEI and IMSI and sends them

through a Local Socket. So, the malware programs without READ PHONE

STATE permissions receive the data from a same SOCKET ADDRESS of

Local Socket and send them to a distant server. The user-sensitive data can

also be transmitted through other public interfaces.

The installation of our set is automatically cancelled because it contains

malicious code. However, we decided to test manually the repackaging

228 International Journal of Electronic Commerce Studies

process of DroidDream.

4.3 Repackaging the DroidDream application

As previously stated, the goal of the repackaging process is to create a

safe application with only the necessary permissions. To achieve this, we

extracted, disassembled, patched, and reassembled the application.

Extracting and decoding: The extracting and decoding steps on

DroidDream-infested applications is slightly different than on regular

applications. The DroidDream application contains a nested .apk file in the

assets/directory (under the name sqlite.db). Therefore, the extracting and

decoding steps must also be performed on the nested .apk file.

Modifying manifest file: In the above manifest file, we deleted three

permissions: READ_PHONE_STATE, READ_CONTACTS, and

WRITE_CONTACTS

Rebuild APK: We use APKTool again to generate a new APK file.

Sign the APK file: Android requires all apps to be digitally signed

before they can be installed. This requires each APK to have a digital

signature and a public key certificate. The certificate and the signature help

Android to identify the author of an app. From a security perspective, the

certificate needs to be signed by a certificate authority, who, before signing,

needs to verify that identify stored in the certificate is indeed authentic.

Getting a certificate from an accepted certificate authority is usually not

free, so Android allows developers to sign their certificates using their own

private key, i.e., the certificate is self-signed. The purpose of self-signed

certificates is that it allows apps to be run on Android devices, not for

security. Developers can put any name they want in the certificate,

regardless of whether the name is legally owned by others or not, because

no certificate authority is involved to check it. Obviously, this entirely

defeats the purpose of certificate and signature. Google Play Store performs

some name verification before accepting an app, but other third-party app

markets do not always conduct such verification. The entire process consists

of three steps:

 Step 1: Generate a public and private key pair using the keytool
40

.

 Step 2: Use jarsigner to sign the APK file using the key generated in

the previous step.

 Step 3: Install the modified application on the user device.

Er-rajy Latifa, and El Kiram My Ahmed 229

4.4 Statistic

We applied our tool to 100 mobile banking applications from the

Google Play Store. 50 of these applications are Moroccan banks, 30 are

Tunisian, and 20 are Algerian.

Unnecessary permission: Permissions Watcher identified that 45% of

applications have unnecessary permissions, which can be dangerous. Table 2

below shows that almost all unnecessary requests by applications in our set

are dangerous.

Dangerous permissions: We focused on the prevalence of dangerous

permissions. As we mentioned before, dangerous permissions are displayed

as a warning to users during the applications installation and may have

serious security ramifications on the user's personal data. We noted that 82%

of the applications analyzed have at least one dangerous permission.

Permissions in Android are grouped into feature categories. This provides a

relative measure of part of the protected API that is used by the applications.

A small number of permissions are required very frequently.

In particular, the INTERNET permission is strongly used to bind the

user to his bank to benefit from the mobile services available to him. We

find that 24% of applications request INTERNET as their only dangerous

permission. We also found that 38% of applications combine between three

dangerous permissions. For example, 16% of applications require the

following permissions: CONTACTS, SMS, and PHONE at the same time,

which means that these applications have the power to control and use the

mobile phone to call numbers and send SMS messages without the user's

awareness, which could lead to dangerous consequences during the user’s

banking transactions.

230 International Journal of Electronic Commerce Studies

Table 2. The most common unnecessary permissions requested

PERMISSION % PERMISSION LEVEL

ACCESS_NETWORK_STATE 25% Normal

READ_PHONE_STATE 45% Dangerous

ACCESS_WIFI_STATE 38% Normal

WAKE_LOCK 5% Dangerous

WRITE_EXTERNAL_STORAGE 27% Dangerous

ACCESS_LOCATION 36% Dangerous

PHONE 55% Dangerous

SMS 65% Dangerous

CAMERA 15% Dangerous

INTERNET 85% Dangerous

CONTACTS 30% Dangerous

DEVICE ID & CALL INFORMATION 28% Dangerous

PHOTOS/MEDIA/FILES 34% Dangerous

Although many applications ask for at least one dangerous permission,

the total number of permission requests is typically low. The most highly

privileged application in our set asks for less than half of the available 56

dangerous permissions. Figure 11 shows the distribution of dangerous

permission requested.

Several important categories are requested relatively infrequently,

which is a positive finding. Permissions in the PERSONAL_INFO and

COST_MONEY categories are only requested by 5% of applications. The

PERSONAL_INFO category includes permissions associated with the user's

contacts, calendar, etc. COST_MONEY permissions let applications send

text messages or make phone calls without user confirmation. Users have

reason to be suspicious of applications that ask for permissions in these

categories.

Er-rajy Latifa, and El Kiram My Ahmed 231

Figure 11. Dangerous permissions per application

Table 3 shows the percentage of dangerous permissions requested in

each category. Nearly all applications (82%) ask for at least one dangerous

permission, which indicates that users frequently install applications with

dangerous permissions.

We were interested in the dangerous permissions most frequently

requested by all the banking applications we analyzed. Figure 12 below

illustrates the results of the analysis obtained.We notice the following

permissions: INTERNET(NETWORK),WRITE_EXTERNAL_STORAGE

(STORAGE), READ_PHONE_STATEMENT, and WAKE_LOCK are the

most frequent dangerous permissions requested.

WAKE_LOCK permission allows an application the useof

PowerManager WakeLocks to keep processor from sleeping or screen from

dimming. Thismeans that suchpermission is totally unnecessary for a mobile

banking application. The same is truefor the permission

ACCESS_FINE_LOCATION that allows an application to access the

precise location of the mobile device owner.

10
4

16

7

24
19

11 9
3

0
6

1
5

2
7

4
0

10

20

30

1 2 3 4 5 6 7 8

Dangerous permissions per application

Applications Numbers Number of dangerous Permissions requested

232 International Journal of Electronic Commerce Studies

Table 3. Applications with at least one dangerous permission in each

category

CATEGORY APPLICATIONS %

NETWORK 66 %

SYSTEM_TOOLS 39.7 %

STORAGE 34.1 %

LOCATION 26%

PHONE_CALLS 35%

PERSONAL_INFO 13%

HARDWARE_CONTROLS 17%

COST_MONEY 9%

MESSAGES 5%

ACCOUNTS 2%

DEVELOPMENT_TOOLS 0%

Figure 12. Dangerous permissions per application

5. CONCLUSION

In this paper, we present a tool called Permission Watcher that analyzes

the permissions requested by Android applications at the time of installation

and after their updates. Our reference implementation is very efficient and

induces a small performance overhead. Therefore, we have developed this

tool especially for users without a technical and security background. Our

aim was to create system-based permissions on a stable footing by

65%
50%

20%
35% 40%

24%
41%

18% 11%

0%

20%

40%

60%

80%

The most frequent Dangerous
permissions and their categories

Er-rajy Latifa, and El Kiram My Ahmed 233

informing users about dubious permission sets and gives them a third option

when installing applications.

6. REFERENCES

[1] M. Amir, Energy-aware location provider for the Android platform.

University of Alexandria, 2010.

[2] Scientia mobile, Mobile overview report October - December 2014.

Retrieved on June 5, 2016, from

https://www.scientiamobile.com/movr-mobile-overview-report/.

[3] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,

Android Permissions: User attention , comprehension , and behavior.

Proceedings of the Eight Symposium on Usable Privacy and Security.

2012. http://dx.doi.org/10.1145/2335356.2335360.

[4] M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg, and M. Peter,

L4Android: a generic operating system framework for secure

smartphones. Proceedings of the 1st ACM workshop on Security and

privacy in smartphones mobile devices (p39–50). 2011.

http://dx.doi.org/10.1145/2046614.2046623.

[5] N. Viennot, E. Garcia, and J. Nieh, A measurement study of google

play. Proceedings of the 2014 ACM International conference on

Measurement and modeling of computer systems (p221–233). 2014.

http://dx.doi.org/10.1145/2637364.2592003.

[6] L. Xing, X. Pan, R. Wang, K. Yuan, and X. Wang, Upgrading your

Android, elevating my malware: privilege escalation through mobile

OS updating. Proceedings of 2014 IEEE Symposium on Security and

Privacy. 2014. http://dx.doi.org/10.1109/SP.2014.32.

[7] Z. Fang, W. Han, and Y. Li, Permission based Android security: Issues

and countermeasures. Computer Security, 43, p205–218, 2014.

http://dx.doi.org/10.1016/j.cose.2014.02.007.

[8] I. R. Forman, and N. Forman, Java Reflection in Action. Manning

Publications, 2004.

[9] J. Butler, VICE – Catch the hookers! Black Hat USA 61, p17-35, 2004.

[10] P. Reviewed, and K. Anne, Connecting Math Methods and Student

Teaching through Practice-Based Strategies: A Study of Pre-Service

Teachers' Math Instruction. Electronic Thesis and Dissertations UCLA,

2012.

[11] R. Di Pietro, F. Lombardi, and S. Rossicone, Modeling Mobile

Resource Security. Mat.Uniroma3.It, 2013.

[12] T. Report, Analysis of Dalvik virtual machine and class path library.

Retrieved on June 7, 2016, from

http://lim.univ-reunion.fr/staff/fred/Doc/Dalvik/Analysis-of-Dalvik-V

M.pdf.

234 International Journal of Electronic Commerce Studies

[13] D. Barrera, Securing decentralized software installation and updates.

Carleton University, 2014. https://doi.org/10.22215/etd/2014-10421.

[14] W. Enck, D. Octeau, P. Mcdaniel, and S. Chaudhuri, A study of

Android application security. Proceedings of the 20th USENIX

Conference on Security (p21).2011.

[15] A. P. Felt, K. Greenwood, and D. Wagner, The effectiveness of

application permissions. Proceedings of the 2nd USENIX Conference

on Web Application Development (p7), 2011.

[16] W. Enck, M. Ongtang, and P. McDaniel, On lightweight mobile phone

application certification. Proceedings of the 16th ACM conference on

Computer and Communications Security (p235-245). 2009.

http://dx.doi.org/10.1145/1653662.1653691.

[17] D. Barrera, H. G. Kayacik, P. C. Van Oorschot, and A. Somayaji, A

methodology for empirical analysis of permission-based security

models and its application to Android. Proceedings of the 17th ACM

Conference on Computers and Communications Security (p73–84).

2010. http://dx.doi.org/10.1145/1866307.1866317.

[18] A. Möller, T. U. München, F. Michahelles, S. Diewald, L. Roalter, and

M. Kranz, Update behavior in app markets and security implications: A

case study in google play. Proceedings of the 3rd International

Workshop on Research in the Large, Held in Conjunction with Mobile

HCI (p3–6), 2012.

[19] L. Tenenboim-Chekina, O. Barad, A. Shabtai, D. Mimran, L. Rokach,

B. Shapira, and Y. Elovici, Detecting application update attack on

mobile devices through network features. Paper Presented at 2013

IEEE Conference on Computer Communications Workshops

(INFOCOM WKSHPS), Turin, Italy, April 14-19, 2013.

http://dx.doi.org/10.1109/ INFCOMW.2013.6970755.

[20] E. Chin, A. P. Felt, V. Sekar, and D. Wagner, Measuring user

confidence in smartphone security and privacy. Proceedings of the

Eighth Symposium on Usable Privacy and Security. 2012.

http://dx.doi.org/10.1145/2335356.2335358.

[21] B. Liu, J. Lin, and N. Sadeh, Reconciling mobile app privacy and

usability on smartphones: could user privacy profiles help?

Proceedings of the 23rd international conference on World wide web (p

201–212). 2013. http://dx.doi.org/10.1145/2566486.2568035.

[22] P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung, N. Sadeh, and D.

Wetherall, A conundrum of permissions: installing applications on an

Android smartphone. International Conference on Financial

Cryptography and Data Security (p68-79). 2012.

[23] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A. Sadeghi,

XManDroid: A New Android Evolution to Mitigate Privilege

Escalation Attacks. Technische Universität Darmstadt, Technical

Er-rajy Latifa, and El Kiram My Ahmed 235

Report TR-2011-04(p4–7). 2011.

[24] R. Xu, H. Saïdi, R. Anderson, and H. Saıdi, Aurasium: practical policy

enforcement for Android applications. Proceedings of the 21st USENIX

Conference on Security Symposium (p27). 2012.

[25] M. Zhang and H. Yin, AppSealer: Automatic generation of

vulnerability-specific patches for preventing component hijacking

attacks in Android applications. Proceedings 2014 Network and

Distributed System Security Symposium (p23–26). 2014.

http://dx.doi.org/10.14722/ndss.2014.23255.

[26] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, Detecting repackaged

smartphone applications in third-party android marketplaces.

Proceedings of the second ACM Conference on Data and Application

Security and Privacy (p317–326). 2012.

http://dx.doi.org/10.1145/2133601.2133640.

[27] J. Kornblum, Identifying almost identical files using context triggered

piecewise hashing. Digital Investigation, 3, p 91–97, 2006.

[28] I. You and K. Yim, Malware obfuscation techniques: A brief survey.

Proceedings of the 2010 International Conference on Broadband,

Wireless Computer, and Communication and Applications (p297–300).

2010. http://dx.doi.org/10.1109/BWCCA.2010.85.

[29] A. Desnos, and G. Gueguen, Android: From reversing to

decompilation. Proceedings of the Black Hat Abu Dhabi (p1–24).

2011.

[30] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, SCanDroid: Automated

security certification of Android applications. University of Maryland

Department of Computer Science, Technical Report

CS-TR-4991(p238).2010.

[31] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J.

Jung, P. McDaniel, and A. N. Sheth, TaintDroid: An information-flow

tracking system for realtime privacy monitoring on smartphones. ACM

Transactions on Computer Systems (TOCS), 32(2), p393-407, 2014.

http://dx.doi.org/10.1145/2619091.

[32] V. Rastogi, Y. Chen, and W. Enck, AppsPlayground: Automatic security

analysis of smartphone applications. Proceedings of the third ACM

Conference on Data and Application Security and Privacy (p209–220).

2013. http://dx.doi.org/10.1145/2435349.2435379.

[33] N. J. Percoco, and S. Schulte, Adventures in BouncerLand. Retrieved

on June 8, 2016, from

https://media.blackhat.com/bh-us-12/Briefings/Percoco/BH_US_12_Pe

rcoco_Adventures_in_Bouncerland_WP.pdf.

[34] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and B.

Zang, Vetting undesirable behaviors in android apps with permission

use analysis. Proceedings of the 2013 ACM SIGSAC Conference on

236 International Journal of Electronic Commerce Studies

Computer & Communications Security (p611–622). 2013.

http://dx.doi.org/10.1145.2508859.2516689.

[35] J. Andrus, C. Dall, A. Van Hof, O. Laadan, and J. Nieh, Cells: A virtual

mobile smartphone architecture categories and subject descriptors.

Proceedings of the Twenty-Third ACM Symposium on Operating

System Princuples (p173–187). 2011.

[36] P. Zhang, H. Sun, and Z. Yan, Mechanism for security enhancement in

mobile application installation. Proceedings of the 2012 2nd

International Conference on Computer and Information Applications

(p 4382–4387). 2013. http://dx.doi.org/10.2991/iccia.2012.81.

[37] K. Tam, S. J. Khan, A. Fattoriy, and L. Cavallaro, CopperDroid:

automatic reconstruction of Android malware behaviors. Proceeding

2015 Network and Distributed System Security Symposium.2013.

http://dx.doi.org/10.14722/ndss.2015.23145.

[38] T. Vidas, and N. Christin, Evading Android runtime analysis via

sandbox detection. Proceedings of the 9th ACM Symposium on

Information, Computer and Communications Security (p447–458).

2014. http://dx.doi.org/10.1145/2590296.2590325.

[39] S. Neuner, V. Van Der Veen, M. Lindorfer, M. Huber, G. Merzdovnik,

M. Mulazzani, and E. Weippl, Enter Sandbox: Android Sandbox

Comparison. Proceedings of the Third Workshop on Mobile Security

Technologies (MoST). 2014.

[40] C. Willems, T. Holz, and F. Freiling. Toward automated dynamic

malware analysis using CWSandbox. IEEE Security and Privacy

Magazine, 5(2), p32–39, 2007. http://dx.doi.org/10.1109/MSP.2007.45.

[41] A. Dewald, T. Holz, and F. C. Freiling, ADSandbox. Proceedings of the

2010 ACM Symposium on Applied Computing (p1859-1864). 2010.

http://dx.doi.org/10.1145/1774088.1774482.

[42] X. Zhang, F. Breitinger, and I. Baggili. Rapid Android parser for

investigating DEX files (RAPID). Digital Investigation, 17, p28–39,

2016. http://dx.doi.org/10.1016/j.diin.2016.03.002.

[43] P. Barros, R. Just, S. Millstein, P. Vines, W. Dietl, M. Amorim, and M.

D. Ernst, Static analysis of implicit control flow: Resolving Java

reflection and Android intents. 2015 30th IEEE/ACM International

Conference on Automated Software Engineering (p669-679). 2015.

http://dx.doi.org/10.1109/ASE.2015.69.

[44] J. Xu, S. Li, and T. Zhang, Security analysis and protection based on

Smali injection for Android applications. International Conference on

Algorithms and Architectures for Parallel Processing (p577–586).

2014. http://dx.doi.org/10.1007/978-3-319-11197-1_44.

[45] J. Ding, P. Chang, W. Hsu, and Y. Chung, PQEMU: A parallel system

emulator based on QEMU. 2011 IEEE 17th International Conference

on Parallel and Distributed Systems (p176-283). 2011.

Er-rajy Latifa, and El Kiram My Ahmed 237

http://dx.doi.org/10.1109/ICPADS.2011.102.

[46] A. Developers, UI/Application Exerciser Monkey. Retrieved on June 8,

2016, from http://developer.android.com/%0Atools/help/monkey.html.

[47] K. Jones, Loadable kernel modules. Usenix Magazine, 26(7), p43-49,

2001.

[48] Google, Android debugger bridge. Retrieved on June 9, 2016, from

https://developer.android.com/studio/command-line/adb.

[49] T. Kohno, Attacking and repairing the WinZip encryption scheme.

Proceeding of the 11th ACM Conference on Computer and

Communications Security (p72-81). 2004. http://dx.doi.org/

10.1145/1030083.1030095.

[50] Android4me, AXMLPrinter2.jar[Online]. Retrieved on June 10, 2016,

from https://storage.googleapis.com/google-code-archive-downloads/

v2/code.google.com/android4me/AXMLPrinter2.jar.

[51] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, Cuckoo: A computation

offloading framework for smartphones. International Conference on

Mobile Computer, Application, and Services (p59-79). 2012.

https://doi.org/10.1007/978-3-642-29336-8_4.

[52] M. Zheng, M. Sun, and J. C. S. Lui, DroidAnalytics: A signature based

analytic system to collect, extract, analyze and associate Android

malware. 2013 12th IEEE International Conference on Trust, Security

and Privacy in Computing and Communications (p163-171). 2013.

http://dx.doi.org/10.1109/TrustCom.2013.25.

[53] V. Jaglan, S. Dalal, and S. Srinivasan. Enhancing security of

agent-oriented techniques programs code using jar files. International

Journal on Computer Science and Engineering, 3(4), p1627–1632,

2011.

[54] S. R. Kurhade, and N. D. Gite, Android anti-malware analysis.

International Journal of Advanced Research in Computer Engineering

& Technology, 4(5), p2261–2266, 2015.

[55] F. Martinelli, F. Mercaldo, V. Nardone, and A. Santone, Twinkle

Twinkle Little DroidDream, How I Wonder What You Are? 2017 IEEE

International Workshop on Metrology for Metrology for AeroSpace (p

21-25). 2017. http://dx.doi.org/10.1109/MetroAeroSpace.2017.7999

579.

[56] M. Balanza, K. Alintanahin, O. Abendan, and J. Dizon, DroidDream

light lurks behind legitimate Android Apps. 2012 6th International

Conference on Malicious and Unwanted Software (p73-78). 2011.

http://dx.doi.org/ 10.1109/MALWARE.2011.6112329.

[57] Y. Zhou, and X. Jiang, Dissecting Android malware: Characterization

and evolution. 2012 IEEE Symposium on Security and Privacy (p

95-109). 2012. http://dx.doi.org/10.1109/SP.2012.16.

[58] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, W. Menzel, W.

238 International Journal of Electronic Commerce Studies

Mostowski, A. Roth, S. Schlager, and P. H. Schmitt, The KeY tool

Integrating object oriented design and formal verification. Software

System Model, 4(1), p32-54, 2005.

https://doi.org/10.1007/s10270-004-0058-x.

