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ABSTRACT 

URL filtering is an essential tool used by Internet Service Providers 

(ISPs) and organizations to restrain clients from accessing non-secured or 

illegal web content. Designing a URL filtering method that achieves a high 

bit rate of 100 Gb/s and beyond for international ISPs is a challenging task. 

High-performance URL filtering with multi-gigabit rate capacity requires a 

fast URL matching algorithm and an enhanced packet processing technique. 

In this paper, we tackle these challenges by design and development of a 

software-based URL filtering system to support 100 Gb/s bandwidth. Our aim 

is to build a system that runs on a single commercial off-the-shelf (COTS) 

server with multi-core CPUs. We propose a compact URL representation 

using AVL tree and a multi-core/multi-thread filtering technique with session 

hijacking and fast packet processing framework. Performance measurements 

results show successful URL filtering operating at 100 Gb/s in a real network 

testbed. 

mailto:kasom.k@ku.ac.th
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1. INTRODUCTION 

URL filtering has become an important network middlebox to control 

web access and enforce security policy. In several countries, Internet Service 

Providers (ISPs) are enforced to deploy URL filtering to filter inappropriate 

websites such as sites containing violence, pornography, gambling, and 

illegal drug content
1
. In enterprise networks, URL filtering is used to restrict 

access to non-productivity or phishing websites that perfectly replicate web 

content like legitimate banking and e-commerce sites 

Current URL filtering architecture can be classified into two main 

categories, i.e., pass-through and pass-by
2
. The pass-through (also called 

inline or bump in the wire) technique requires that the filtering engine 

presents itself as a traffic barrier. The filtering engine receives and validates 

a URL request against a pre-defined URL blacklist to decide whether to pass 

or to drop the request. In contrast, the pass-by technique allows all traffic to 

flow freely. Traffic is mirrored and inspected in a non-blocking fashion with 

no additional queueing delay. TCP sequence number prediction with a 

session termination technique is required to track and discontinue HTTP 

connections. When a client’s requested URL is matched against the 

database, the filtering engine injects packets to prematurely terminate the 

TCP-based HTTP connection before web content is transferred from the 

web server to the client. 

Figure 1 shows an example of the pass-by URL filtering architecture 

used in our approach. This architecture is highly effective for filtering 

unencrypted HTTP traffic. For filtering encrypted HTTP traffic, however, 

the pass-through architecture is required because traffic decryption is 

necessary for inspection. Filtering encrypted traffic requires installation of 

trusted certificates on client machines, and it is not a focus of this paper. 
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Figure 1. A pass-by URL filtering architecture 

A single URL filtering machine for 10 Gb/s Ethernet (10 GbE) network 

is common in practice. But there is a new challenge for URL filtering now 

that several ISPs have begun to deploy the 40/100 GbE to meet increasing 

demands for high speeds and bandwidth driven by emerging applications. 

New software systems can gain benefits from advanced processor 

technology since the number of cores in commodity CPUs keeps increasing. 

Meanwhile, modern network interface cards (NICs) support multiple queues 

allowing cores to process packets concurrently in multi-gigabit rate. The 

evolution of commercial off-the-shelf (COTS) hardware with multi-core 

CPUs enables software-based applications to achieve hardware-level 

performance with a reasonable investment cost. 

Today, URL filtering tools manage several millions of URLs entries 

stored in blacklists. The set of URL blacklists, called the URL database or 

for short database, borrows four basic database operations, i.e., Create, 

Read, Update, Delete (CRUD). However, the generic representation of URL 

strings used in traditional databases is inadequate to support real-time 

CRUD operations in multi-gigabit networks. 

This paper tackles these challenges by developing a software-based 

URL filtering system to achieve 100 Gb/s bandwidth capability. Our 

approach is to design and to implement the URL filtering system that 

utilizes multi-core x86 based CPUs on a single COTS server. A design for 

URL representation with built-in compression property helps optimize 

memory usage and provide real-time high performance URL filtering. 

Compact URL representation with fast URL matching and multi-core CPUs 

with fast packet processing is an essential combination in the design. To the 

extent of our knowledge, the proposed system is the first demonstration of 

software-based URL filtering on COTS to handle full 100 Gb/s traffic.  

The remainder of this paper is organized as follows: Section 2 

discusses related works and existing approaches of URL filtering. Section 3 
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describes the high-level system and functionality of the URL filtering 

system. Section 4 presents session tracking based on the hijacking technique 

with timing analysis. Section 5 describes data structures supporting the URL 

representation and the URL matching algorithm. Section 6 presents 

performance measurements and experimental results from a real 100 Gb/s 

testbed. Section 7 concludes the paper and discusses future works. 

2. RELATED WORKS 

URL filtering extracts a URL from packet’s payload and matches it 

against a set of URL blacklists. Real-time URL matching at multi-gigabit 

per second rates requires a fast matching algorithm with high-speed packet 

processing capacity. A software-only solution for real-time URL filtering 

using the standard NIC has poor performance under multi-gigabit networks, 

since in-kernel network stacks in operating systems have been designed for 

generic applications based on per-packet interrupts. A high rate of interrupts 

from the NIC to the CPU can potentially overload the CPU and result in 

packet loss.  

Hardware-assisted accelerators using a Field-Programmable Gate Array 

(FPGA)
3, 4 

and network processors
5 

are known to overcome such software 

limitations. Both FPGA and network processors are designed to offload 

common tasks associated with upper layers, such as header parsing, pattern 

matching, and packet modification. Multi-threaded processing allows 

several packets to be processed in parallel, offering filtering performance 

improvement in both throughput and latency. The FPGA testbed in  

Garnica et al.
4
 has been developed to handle 10 Gb/s traffic with the 

possibility to support 100 Gb/s traffic by estimation. 

Recently, many literatures have extensively examined several software 

programs based on fast packet processing frameworks for high-speed packet 

I/O. The well-known frameworks are PF_RING ZC
6
, netmap

7
, and Intel 

DPDK
8
. Some commercial vendors offer proprietary frameworks with their 

NICs, such as OpenOnload by Solarflare
9
 and Sniffer10G by Myricom

10
. 

Basically, the fast packet framework is a software driver that uses polling 

with a ring buffer to handle packets instead of interrupts. The default 

in-kernel network stack is bypassed, i.e., packets are directly processed by 

the software driver and passed to applications. Eliminating interrupt 

overhead helps free up the CPU and enables applications to handle network 

traffic at several 10 Gb/s rate. The frameworks are used as modern building 

blocks for developing software-based high-speed packet processing 

applications instead of using hardware-assisted approaches. 
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In addition, advanced development in multi-core CPUs and new PCI 

Express bus (PCIe) play a significant role in performance improvement for 

packet processing. Currently, a single PCIe3.0 bus with 16 lanes (signaling 

pairs) allows packet transfer from NICs to CPUs at speeds up to 126 Gb/s. 

By utilizing multi-core processors more efficiently under the framework, 

packet processing performance is substantially improved in both throughput 

(Mpps) and bandwidth (Gb/s). 

URL matching is the core operation of URL filtering systems and 

requires an efficient URL representation to support fast queries and frequent 

updates for a large collection of URL datasets. The hashing method
11

 offers 

a remarkable URL matching speed, but lacks prefix matching. The modified 

Wu-Manber algorithm with 32-bit CRC hashing proposed by Zhou, Song, 

and Jia
12

 provides URL prefix matching and achieves about 80% URL 

compression rate. However, a legitimate URL not in the blacklist may be 

blocked due to a false positive match caused by a collision in the hash 

function. 

Dealing with collisions in hashing can be addressed in various methods 

using separate chaining, open addressing, and coalesced hashing
13

. In an 

average case, the time complexity of insertion and searching the hash table 

is O(1) constant time. In the worst-case scenario, the operations can degrade 

to O(n) so that all input data are mapped to same index. Several hashing 

variations are proposed to improve the asymptotic results, for example 

Robin Hood hashing, hopscotch hashing, cuckoo hashing, Horton tables, 

and others
14

. Although collisions can be totally avoided by using a perfect 

hash function or minimal perfect hashing
15

, such functions would impose 

substantially high computation time and space requirements. 

Alternative to hashing, tree is a highly versatile data structure for URL 

representation in a hierarchical form. Self-balancing binary trees such as 

AVL (Adelson-Velskii and Landis) and Red-Black tree
16

 are superior than 

unbalanced binary trees. For lookup-intensive applications, the AVL tree 

performs better than the Red-Black tree because it is more strictly balanced. 

Keeping balanced factor data at each node can improve the performance of 

AVL tree operations with a low computation overhead. Compared to 

hashing, an AVL tree guarantees a collision-free property with the O(log n) 

time for all cases. URL entries are consistently added or removed and the 

tree’s logarithmic insertion and deletion time are preferable. Moreover, trees 

efficiently support highly complicated range queries and nearest-neighbor 

queries for hashing. By these criteria, AVL tree is the best-fit data structure 

to represent URLs in our proposal. 
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3. HIGH LEVEL SYSTEM DESIGN 

In this section, we describe a design for a URL filtering system by 

focusing on core components and intercommunications among them. The 

proposed system consists of four main components, as illustrated in Figure 

2. The next subsections describe detailed functionalities of each component. 

3.1 URL Manager 

The URL Manager is responsible for CRUD operations with the GUI. 

It receives an individual or batch URL with additional information 

(categories, filtering period, etc.) and keeps them in two databases: (1) URL 

database and (2) In-memory database. The URL database is long-term 

storage supporting high level management such as logging, report, and 

backup. We use MySQL to manage and store the URL database. The 

in-memory database keeps URLs in compression form using an AVL tree for 

fast URL matching. 

 

 

Figure 2. High level system design of the proposed URL filter 

3.2 URL Analyzer 

The URL Analyzer functions as an inspector and query engine to 

determine whether a requested URL exists in the in-memory database or 

not. Given an HTTP connection from a client to a server, the URL Analyzer 

receives traffic from the communicator and silently observes the TCP 3-way 

handshake operation between the two endpoints. After the handshake is 

completed and the connection is established, the URL Analyzer 

continuously inspects subsequent packets by looking for the “HTTP GET” 

keyword. Once it is found, the requested URL in the packet will be extracted 
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and compared to the in-memory database. An inspection of the “HTTP 

GET” keyword helps cover all HTTP packets regardless the port numbers 

used in the request. 

A URL query operation is regarded as a binary tree search operation. A 

result from a query either returns a true or false answer depending on 

whether or not a URL match is found. Neither a false positive nor a false 

negative answer is allowed in our query operation. For each matching URL, 

the URL Analyzer activates the Session Controller to start a filtering 

mechanism. 

3.3 Session Controller 

Technically, a client-server-based HTTP connection will be completely 

terminated when the client receives a TCP FIN (Finish) packet from the 

server and the server receives a TCP RST (Reset) packet from the client. 

The Session Controller performs this operation by sending a forged FIN and 

a forged RST packet with a corresponding sequence number to the client 

and the server, respectively. This technique is widely known as Session 

Hijacking
17

. Section 4 presents the design and analysis of the Session 

Hijacking technique. 

3.4 Communicator 

The Communicator acts as an interface for incoming and outgoing 

traffic by receiving packets from network interfaces and forwarding them to 

the URL Analyzer and Session Controller. It also passes forged FIN and 

RST packets to terminate HTTP connections. 

4. SESSION HIJACKING 

Session Hijacking is widely known as a man-in-the-middle (MITM) 

attack method. In this method, a third-party intercepts communication 

sessions and pretends to be one of the parties involved in the session. URL 

filtering needs to recognize every HTTP session by computing the TCP 

sequence numbers in each session.  

4.1 Session Timing Analysis  

Session Timing Analysis shows the timing diagrams of URL inspection 

and packet injections based on the Session Hijacking technique, as 

described in the following steps: 
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(1) After completing 3-way handshake, the client sends a URL request to 

the web server at t0. 

(2) URL filtering captures this request at t1. 

(3) URL filtering analyzes and matches the requested URL and tells the 

Session Controller to compute the corresponding sequence number. 

The Session Controller injects one FIN and one RST packet at t2.  

(4) The FIN packet reaches the client at t3. The RST packet may reach the 

web server at a time later than the server’s reply packet.  

(5) The HTTP reply packet from the web server reaches the client at t4, and 

the client responds with an RST packet back at t5.  

As shown in Figure 3, the web server receives two RST packets – the 

forged one from URL filtering and another one from the client. Both packets 

perform the same functionality, which is to terminate the connection on the 

web server. Technically, URL filtering does not need to send the RST 

packet. However, sending it at the earliest possible time may prohibit the 

server from replying with HTTP data back to the client to save bandwidth. 

 

Figure 3. Session Hijacking timing diagram 
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4.2 Successful Filtering Conditions  

As described in the previous section, a forged FIN and a forged RST 

packet are injected with the correct sequence number. The forged FIN 

packet forces the client to ignore all subsequent packets belonging to the 

current session, while the forged RST packet is aimed at stopping the server 

from relaying data to the client. To achieve successful filtering, the forged 

FIN packet must reach the client at t3 before the server’s HTTP reply packet 

reaches the client at t4. This condition can be expressed by the following 

inequality: 

t3 < t4                      (1) 

Note that the length of time starting from sending an HTTP request 

packet at t0 until the reply HTTP packet reaches the client at t4 is called the 

Round-Trip Time (RTT). To represent the inequality of (1) in terms of RTT, 

we add t0 to the inequality: 

t3 –t0 < t4–t0       (2) 

Where Ti = ti –ti-1, the t3–t0 interval is obviously the summation of 

T1, T2, and T3; hence, we can rewrite inequality (2) as follows: 

 

                          T1+T2+T3 < t4–t0         (3) 

The T1+T3 is the RTT from the client to URL filtering (RTTCF) and 

T2 is the URL processing time (TPROC). In addition, t4–t0 is the RTT from 

the client to the server (RTTCS). Thus, inequality (3) can be rewritten as:  

TPROC + RTTCF < RTTCS     (4) 

We will show in Section 6 that TPROC is approximately only 1% of 

RTTCF, and it can be neglected. Therefore, RTTCS is always larger than 

RTTCF, and a successful filtering condition is guaranteed. 
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5. URL DATA STRUCTURES 

This section describes how to represent URLs with an AVL tree. 

Firstly, we introduce a basic node representation and the overall tree 

structure. Then, we show the space and time spent in URL processing.  

5.1 Node Representation 

We adopt the AVL tree implementation
18

 to represent URLs with 

incremental encoding
19

 for URL compression. Figure 4 illustrates a node 

structure for storing a URL. Each node contains the following five fields: 

 RefID: Unique URL identifier referenced to its predecessor. The RefID 

will be incremented by one for each newly created node. 

 cPrefix: Number of common prefix characters referenced with its 

predecessor. 

 DiffURL: Uncommon tail URL string terminated with a null string. 

 Lchild: Pointer to the left sub-tree. 

 Rchild: Pointer to the right sub-tree. 

 

Figure 4. Representation of a URL as a node in an AVL Tree 

The URL string will be encoded using the differences between 

successive data. A node is created and a URL is compressed through the 

following steps:  

(1) The first incoming URL is assigned to be the root node. The DiffURL 

contains the complete URL string. The cPrefix is set to zero and the 

rest of the fields are set to null.  

(2) The next URL will be compared with every node on the path starting 

from the root node and its predecessors to find the common prefix. The 

RefID of a newly added node will point to its predecessor. The cPrefix 

is set to the number of common characters and the remaining URL 

string is stored in the DiffURL. 

(3) The Lchild or Rchild in the predecessor node is updated, depending on 

the branch of the sub-tree. 

(4) Repeat step 2 until no URL remains. 

 

RefID cPrefix DiffURL Lchild Rchild

32 bits         8 bits      Variable terminated with null string        32 bits          32 bits
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Figure 5 shows an example representing four listed URLs. Searching 

(reading) a URL is available for both exact matching and prefix matching 

using standard tree traversal methods. Although additional encoding 

algorithms, such as Huffman, can be applied to strings in DiffURL to get a 

higher compression ratio, such algorithms will significantly decrease the 

search performance and should be avoided. 

 

Figure 5. An example of URL representation using AVL tree 

5.2 Tree Representation 

An AVL tree is represented by three arrays, as shown in Figure 6. The 

first array, TreeNode, contains a list of nodes in the AVL tree. It contains 

Lchild, Rchild, and their corresponding tree heights. All URL nodes are 

stored continuously using the CompressedURL array. Direct access to each 

URL node is referenced by the DataPtr array.  

Note that each entry in CompressedURL is a slightly modified version 

of a URL node. The 32-bit Lchild and 32-bit Rchild (as shown in Figure 4) 

have been relocated from CompressedURL into TreeNode. Two nibbles, 

one from Lchild and one from Rchild, are borrowed to keep the tree height 

for re-balancing the rotation operation. Thus, the length of Lchild and 

Rchild are reduced from 32-bit to 28-bit pointers. The maximum number of 

URLs is equal to 2
28

, or approximately 268 million URLs. This database 

size is practically sufficient for deployment to large-scale ISPs. 

The reason behind this modification is to enhance memory usage and 

code optimization. Generally, a compiler efficiently optimizes code if the 

data is aligned in 2
N
 byte boundary. Moreover, TreeNode and DataPtr 

arrays can be viewed as a single array. This allows a URL string query via 

the TreeNode array to act as a regular searching tree and gives direct access 

null 0 www.sun.net/ 1 2

ID=0, www.sun.net/   

ID=1, www.sen.net/   

ID=2,  www.sun.net/news/

ID=3, www.sun.net/news/blog/

Four URLs to be added:

ID=0, Add www.sun.net/

ID=1, Add www.sen.net/ 

ID=2, Add www.sun.net/news/ 

ID=3, Add www.sun.net/news/blog/

null 0 www.sun.net/ null null

ID=0, www.sun.net/   

Step 1: ID=0, Add www.sun.net/

Step 4: ID=3, Add www.sun.net/news/blog/

0 5 en.net/ null null 0 12 news/ null 3

2 17 blog/ null null

(Omitted Step 2 and 3)
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to a node by a given URL ID through the DataPtr array. 

 

Figure 6. Global structure for URL representation 

5.3 URL Storing 

With incremental encoding as described in Section 5.1, a node at level 

L will store only non-common suffix strings compared to the previous node 

at level L-1. The total memory bytes required to store compressed URLs, 

Surl,, can be computed by summation of the non-duplicated characters from 

all nodes in the tree and can be expressed as follows:  

 

            
 
   

 
              (5) 

where: 

 Yij is the number of characters at node j and position I; 

 m is the number of URL characters at node j; 

 n is the number of total URL database; 

 d is the number of non-common suffix character stored in a node and 

                 ; and 

 C is a constant represented all overhead of URL representation. 
We ran an experiment on 10 million URLs. The average URL length 

before compression was equal to 67.49 bytes. The average URL length after 

compression, including all the overhead, was reduced to be 35.54 bytes. 

This yields a 52.65% compression ratio. Based on this ratio, compressing a 
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total of 268 million URLs requires approximately 9 GB of memory space. 

5.4 URL Matching 

Based on URL representation in the AVL tree, the search operation is 

performed with O (log n) time complexity, where n is the number of nodes 

in the tree. Each URL matching process requires a character comparison 

while traversing each node of the tree. The computation time, Tmatch, for 

URL matching can be expressed as follows:  

             
 
   

       
               (6) 

where: 

Xij is the matching time for each character of a requested URL with the 

URL string at node j, and i is the compared character position; 

m is the length of URL string at node j; and 

n is the number of total URLs in the database.  

6. PERFORMANCE MEASUREMENTS 

We conducted two experiments to measure system performance. The 

first experiment measured URL processing time and compression 

throughput. The second experiment tested the filtering performance at 100 

Gb/s synthetic traffic modified from real traffic. 

6.1 The Testbed 

The testbed was composed of five traffic generators and one filtering 

engine. Each generator was a DELL R230 server equipped with a Xeon 

E3-1220v5 4-core CPU running at 3.00 GHz and a dual-port 10 GbE 

Myricom NIC. A total of 10 ports of 10 Gb/s each generated the total 100 

Gb/s of traffic. The filtering engine was a DELL R620 server equipped with 

dual Xeon E5-2643v2 6-core CPUs running at 3.5 GHz (total 12 CPU cores 

and hyper-threading off), 64 Gigabyte of total memory, and five dual-port 

10 GbE Myricom NICs. The Sniffer10G was used as the packet processing 

driver in the filtering engine. The system ran on CentOS 6.5 Linux with 

kernel 2.6.32. Each CPU core was assigned to receive a 10 Gb/s traffic 

stream. The URL database contained 10 million URLs generated from a 

blacklist database (http://urlblacklist.com) combined with our own blacklist. 

The traffic generators and URL filtering were connected back-to-back 

http://urlblacklist.com/
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with fiber-optic cables as shown in Figure 7. Each traffic generator used the 

tcpreplay tool to replay its own pcap-based traffic repository captured from 

a university campus network. Each repository contains one million packets 

with a total 651 MB in size. 

  

Figure 7. The testbed for 100 Gb/s URL filtering 

6.2 Basic URL Processing Performance 

We measured the time to create and search one URL from one to 10 

million entries. In addition, we measured the compression throughput in 

terms of Mbps. The measurements were conducted on the filtering engine 

using a single core. Increased performance could also be achieved by 

parallelization of these operations.  

Storing a URL is a procedure that creates a node and stores it in a 

compressed form in the AVL tree. Figure 8(a) shows the distribution of time 

needed to create the AVL tree until it completely contains 10 million URLs. 

It takes 4.95 µs on average to store one URL (Min = 1 µs, Max = 98 µs). 

Figure 8(b) shows the compression throughput as a function of the number 

of URLs. The compression throughput decreases since processing time 

grows with the tree size. 

We tested the searching time by querying a URL entry by entry. 

Figures 9(a) and 9(b) respectively show searching time using URL ID and 

URL string. The search using URL ID runs very fast at 0.6 µs on average 

(Min = 0.1 µs, Max = 35 µs). On the other hand, searching with URL string 

(matching) requires more processing time. On average, the matching time 

(TMatch) is equal to 3.83 µs (Min = 1 µs, Max = 43 µs). 

Referring to the inequality (4), we can express the processing time, 

URL Filtering 
Engine

Packet Generator 1

Packet Generator 2

Packet Generator 3

2x10Gbps

2x10Gbps

2x10Gbps

Packet Generator 4

Packet Generator 5

2x10Gbps

2x10Gbps
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TPROC, as:  

                       TPROC = TMatch + TFIN-RST                      (7) 

The TFIN-RST is the time that the filtering engine spends to generate a 

FIN and an RST packet. From the measurement, TFIN-RST is less than 1 µs, 

which is relatively smaller than the averaged TMatch. Therefore, successful 

filtering mainly depends on TMatch., i.e., performance of the URL matching 

mechanism. 

 

Figure 8. URL processing performance: (a) URL creation time and (b) URL 

compression throughput 

 

 

Figure 9. Search performance using (a) URL ID and (b) URL string 

6.3 Filtering Performance 

We measured the filtering performance in terms of (1) CPU utilization 

and (2) Filtering throughput as a function of the number of URLs. Each 

measurement was conducted with a 100 Gb/s traffic rate for two cases: (1) 
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Mixed traffic (MixT) and (2) HTTP-only traffic (HoT). In MixT, the pcap 

repository contained mixed traffic. In HoT, all non-HTTP traffic was filtered 

out. Since a higher consecutive HTTP request rate was generated, HoT 

creates a heavier load on the filtering engine than the MixT does. 

Figure 10(a) shows that the filtering engine can sustain 100 Gb/s 

bandwidth for both MixT and HoT. In MixT, the system reached 70% of 

CPU utilization. In HoT, the system consumed 5-15% more CPU utilization.  

Figure 10(b) shows the throughput test in terms of packets per second. 

The graph shows a flat line, since the throughput mainly depends on the 

traffic rate regardless of the number of URLs. Both MixT and HoT can 

sustain throughput at 31.1 Mpps and 33.58 Mpps, respectively. HoT gives 

slightly better packet throughput than MixT, since non-HTTP packets with 

large payloads were previously filtered out. 

 

Figure 10. Filtering performance at 100 Gb/s: (a) CPU utilization and (b) 

Filtering throughput 

To further investigate the filtering performance against the traffic rate, 

we measured CPU utilization as a function of the traffic rate ranging from 1 

to 100 Gb/s for both the MixT and HoT cases. As shown in Figure 11(a), 

CPU utilization linearly increased up to 70% (MixT) and 85% (HoT) for 

100 Gb/s. 

We collected real RTT statistics between clients and servers from the 

university campus network. The RTT of 15,000 web servers were recorded 

and the first 1,500 servers were selected because the remaining values have 

a very large RTT, and they can be neglected. Figure 11(b) shows the 

ascendingly sorted RTTCS, ranging between 12.15 and 200.57 ms (Maximum 

900 ms is found when total 15,000 servers are considered). The result 

confirms our assumption described in inequality (4) that the RTTCS is much 

larger than TPROC+ RTTCF. 
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Figure 11. (a) CPU utilization as a function of bandwidth and (b) RTT 

between clients and servers 

7. CONCLUSION 

We proposed a compact URL representation scheme with fast URL 

matching. The outcome was a software-based URL filtering system that 

supports a 100 Gb/s data rate using an industry standard COTS server with 

multi-core processors. The design requirements must meet the following 

criteria : (1) Low latency, (2) Configurability, and (3) Economical cost. The 

proposed URL filtering method is transparent to clients using a 

non-blocking method and has zero latency. The system can handle up to 286 

million URLs with flexible configurability. Nowadays, a standard 10 GbE 

NIC costs less than $500. Using high-end Intel Xeon-based COTS 

hardware, a 100 Gb/s URL filtering system can be built for less than 

$15,000. In the future, we are planning to implement the system with a 

single 100 GbE NIC and use the DPDK framework
8
 as a packet processing 

core instead of using Sniffer10G. 

Our system is designed to handle unencrypted HTTP traffic. Filtering 

encrypted traffic requires using a pass-through architecture and installing 

trusted certificates on the client side. This method has not been commonly 

deployed in public ISPs, except in small or enterprise networks. Moreover, a 

new transport service like Quick UDP Internet Connections (QUIC, 

pronounced ‘quick’)
20

 to speed up HTTP requests using UDP instead of TCP 

was recently proposed. QUIC is a UDP-based secure and reliable transport 

for HTTP/2.0. The Session Hijacking technique under the pass-by 

architecture will not work under QUIC, and the only other choice would be 

to implement a pass-through technique to handle QUIC; otherwise, ISPs 

must disable QUIC at their gateways and fallback to TCP-based HTTP 

requests. 
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