
International Journal of Electronic Commerce Studies

Vol.8, No.1, pp.77-96, 2017

doi: 10.7903/ijecs.1483

ACHIEVING 100 GB/S URL FILTERING WITH
COTS MULTI-CORE SYSTEMS

Surachai Chitpinityon
Kasetsart University

50 Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
g5417550019@ku.ac.th

Surasak Sanguanpong

Kasetsart University
50 Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand

surasak.s@ku.ac.th

Supaporn Erjongmanee
Kasetsart University

50 Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand
supaporn.e@ku.th

Kasom Koht-Arsa

Kasetsart University
50 Ngamwongwan Road, Chatuchak, Bangkok 10900, Thailand

kasom.k@ku.ac.th

ABSTRACT

URL filtering is an essential tool used by Internet Service Providers

(ISPs) and organizations to restrain clients from accessing non-secured or

illegal web content. Designing a URL filtering method that achieves a high

bit rate of 100 Gb/s and beyond for international ISPs is a challenging task.

High-performance URL filtering with multi-gigabit rate capacity requires a

fast URL matching algorithm and an enhanced packet processing technique.

In this paper, we tackle these challenges by design and development of a

software-based URL filtering system to support 100 Gb/s bandwidth. Our aim

is to build a system that runs on a single commercial off-the-shelf (COTS)

server with multi-core CPUs. We propose a compact URL representation

using AVL tree and a multi-core/multi-thread filtering technique with session

hijacking and fast packet processing framework. Performance measurements

results show successful URL filtering operating at 100 Gb/s in a real network

testbed.

mailto:kasom.k@ku.ac.th

 International Journal of Electronic Commerce Studies 78

Keywords: URL Filtering, Web Filtering, Session Hijacking, 100 GbE,

COTS, AVL.

1. INTRODUCTION

URL filtering has become an important network middlebox to control

web access and enforce security policy. In several countries, Internet Service

Providers (ISPs) are enforced to deploy URL filtering to filter inappropriate

websites such as sites containing violence, pornography, gambling, and

illegal drug content
1
. In enterprise networks, URL filtering is used to restrict

access to non-productivity or phishing websites that perfectly replicate web

content like legitimate banking and e-commerce sites

Current URL filtering architecture can be classified into two main

categories, i.e., pass-through and pass-by
2
. The pass-through (also called

inline or bump in the wire) technique requires that the filtering engine

presents itself as a traffic barrier. The filtering engine receives and validates

a URL request against a pre-defined URL blacklist to decide whether to pass

or to drop the request. In contrast, the pass-by technique allows all traffic to

flow freely. Traffic is mirrored and inspected in a non-blocking fashion with

no additional queueing delay. TCP sequence number prediction with a

session termination technique is required to track and discontinue HTTP

connections. When a client’s requested URL is matched against the

database, the filtering engine injects packets to prematurely terminate the

TCP-based HTTP connection before web content is transferred from the

web server to the client.

Figure 1 shows an example of the pass-by URL filtering architecture

used in our approach. This architecture is highly effective for filtering

unencrypted HTTP traffic. For filtering encrypted HTTP traffic, however,

the pass-through architecture is required because traffic decryption is

necessary for inspection. Filtering encrypted traffic requires installation of

trusted certificates on client machines, and it is not a focus of this paper.

Surachai Chitpinityon, Surasak Sanguanpong, Supaporn Erjongmanee, and Kasom

Koht-Arsa

79

Figure 1. A pass-by URL filtering architecture

A single URL filtering machine for 10 Gb/s Ethernet (10 GbE) network

is common in practice. But there is a new challenge for URL filtering now

that several ISPs have begun to deploy the 40/100 GbE to meet increasing

demands for high speeds and bandwidth driven by emerging applications.

New software systems can gain benefits from advanced processor

technology since the number of cores in commodity CPUs keeps increasing.

Meanwhile, modern network interface cards (NICs) support multiple queues

allowing cores to process packets concurrently in multi-gigabit rate. The

evolution of commercial off-the-shelf (COTS) hardware with multi-core

CPUs enables software-based applications to achieve hardware-level

performance with a reasonable investment cost.

Today, URL filtering tools manage several millions of URLs entries

stored in blacklists. The set of URL blacklists, called the URL database or

for short database, borrows four basic database operations, i.e., Create,

Read, Update, Delete (CRUD). However, the generic representation of URL

strings used in traditional databases is inadequate to support real-time

CRUD operations in multi-gigabit networks.

This paper tackles these challenges by developing a software-based

URL filtering system to achieve 100 Gb/s bandwidth capability. Our

approach is to design and to implement the URL filtering system that

utilizes multi-core x86 based CPUs on a single COTS server. A design for

URL representation with built-in compression property helps optimize

memory usage and provide real-time high performance URL filtering.

Compact URL representation with fast URL matching and multi-core CPUs

with fast packet processing is an essential combination in the design. To the

extent of our knowledge, the proposed system is the first demonstration of

software-based URL filtering on COTS to handle full 100 Gb/s traffic.

The remainder of this paper is organized as follows: Section 2

discusses related works and existing approaches of URL filtering. Section 3

 International Journal of Electronic Commerce Studies 80

describes the high-level system and functionality of the URL filtering

system. Section 4 presents session tracking based on the hijacking technique

with timing analysis. Section 5 describes data structures supporting the URL

representation and the URL matching algorithm. Section 6 presents

performance measurements and experimental results from a real 100 Gb/s

testbed. Section 7 concludes the paper and discusses future works.

2. RELATED WORKS

URL filtering extracts a URL from packet’s payload and matches it

against a set of URL blacklists. Real-time URL matching at multi-gigabit

per second rates requires a fast matching algorithm with high-speed packet

processing capacity. A software-only solution for real-time URL filtering

using the standard NIC has poor performance under multi-gigabit networks,

since in-kernel network stacks in operating systems have been designed for

generic applications based on per-packet interrupts. A high rate of interrupts

from the NIC to the CPU can potentially overload the CPU and result in

packet loss.

Hardware-assisted accelerators using a Field-Programmable Gate Array

(FPGA)
3, 4

and network processors
5

are known to overcome such software

limitations. Both FPGA and network processors are designed to offload

common tasks associated with upper layers, such as header parsing, pattern

matching, and packet modification. Multi-threaded processing allows

several packets to be processed in parallel, offering filtering performance

improvement in both throughput and latency. The FPGA testbed in

Garnica et al.
4
 has been developed to handle 10 Gb/s traffic with the

possibility to support 100 Gb/s traffic by estimation.

Recently, many literatures have extensively examined several software

programs based on fast packet processing frameworks for high-speed packet

I/O. The well-known frameworks are PF_RING ZC
6
, netmap

7
, and Intel

DPDK
8
. Some commercial vendors offer proprietary frameworks with their

NICs, such as OpenOnload by Solarflare
9
 and Sniffer10G by Myricom

10
.

Basically, the fast packet framework is a software driver that uses polling

with a ring buffer to handle packets instead of interrupts. The default

in-kernel network stack is bypassed, i.e., packets are directly processed by

the software driver and passed to applications. Eliminating interrupt

overhead helps free up the CPU and enables applications to handle network

traffic at several 10 Gb/s rate. The frameworks are used as modern building

blocks for developing software-based high-speed packet processing

applications instead of using hardware-assisted approaches.

Surachai Chitpinityon, Surasak Sanguanpong, Supaporn Erjongmanee, and Kasom

Koht-Arsa

81

In addition, advanced development in multi-core CPUs and new PCI

Express bus (PCIe) play a significant role in performance improvement for

packet processing. Currently, a single PCIe3.0 bus with 16 lanes (signaling

pairs) allows packet transfer from NICs to CPUs at speeds up to 126 Gb/s.

By utilizing multi-core processors more efficiently under the framework,

packet processing performance is substantially improved in both throughput

(Mpps) and bandwidth (Gb/s).

URL matching is the core operation of URL filtering systems and

requires an efficient URL representation to support fast queries and frequent

updates for a large collection of URL datasets. The hashing method
11

 offers

a remarkable URL matching speed, but lacks prefix matching. The modified

Wu-Manber algorithm with 32-bit CRC hashing proposed by Zhou, Song,

and Jia
12

 provides URL prefix matching and achieves about 80% URL

compression rate. However, a legitimate URL not in the blacklist may be

blocked due to a false positive match caused by a collision in the hash

function.

Dealing with collisions in hashing can be addressed in various methods

using separate chaining, open addressing, and coalesced hashing
13

. In an

average case, the time complexity of insertion and searching the hash table

is O(1) constant time. In the worst-case scenario, the operations can degrade

to O(n) so that all input data are mapped to same index. Several hashing

variations are proposed to improve the asymptotic results, for example

Robin Hood hashing, hopscotch hashing, cuckoo hashing, Horton tables,

and others
14

. Although collisions can be totally avoided by using a perfect

hash function or minimal perfect hashing
15

, such functions would impose

substantially high computation time and space requirements.

Alternative to hashing, tree is a highly versatile data structure for URL

representation in a hierarchical form. Self-balancing binary trees such as

AVL (Adelson-Velskii and Landis) and Red-Black tree
16

 are superior than

unbalanced binary trees. For lookup-intensive applications, the AVL tree

performs better than the Red-Black tree because it is more strictly balanced.

Keeping balanced factor data at each node can improve the performance of

AVL tree operations with a low computation overhead. Compared to

hashing, an AVL tree guarantees a collision-free property with the O(log n)

time for all cases. URL entries are consistently added or removed and the

tree’s logarithmic insertion and deletion time are preferable. Moreover, trees

efficiently support highly complicated range queries and nearest-neighbor

queries for hashing. By these criteria, AVL tree is the best-fit data structure

to represent URLs in our proposal.

 International Journal of Electronic Commerce Studies 82

3. HIGH LEVEL SYSTEM DESIGN

In this section, we describe a design for a URL filtering system by

focusing on core components and intercommunications among them. The

proposed system consists of four main components, as illustrated in Figure

2. The next subsections describe detailed functionalities of each component.

3.1 URL Manager

The URL Manager is responsible for CRUD operations with the GUI.

It receives an individual or batch URL with additional information

(categories, filtering period, etc.) and keeps them in two databases: (1) URL

database and (2) In-memory database. The URL database is long-term

storage supporting high level management such as logging, report, and

backup. We use MySQL to manage and store the URL database. The

in-memory database keeps URLs in compression form using an AVL tree for

fast URL matching.

Figure 2. High level system design of the proposed URL filter

3.2 URL Analyzer

The URL Analyzer functions as an inspector and query engine to

determine whether a requested URL exists in the in-memory database or

not. Given an HTTP connection from a client to a server, the URL Analyzer

receives traffic from the communicator and silently observes the TCP 3-way

handshake operation between the two endpoints. After the handshake is

completed and the connection is established, the URL Analyzer

continuously inspects subsequent packets by looking for the “HTTP GET”

keyword. Once it is found, the requested URL in the packet will be extracted

URL
Analyzer

Session
Controller

URL Manager
Communicator

GUI

Packet info

Read reply

URL

Feeder

Terminate
Signal

Traffic In Traffic Out

URL

Database In-memory URL Database

Create, Read, Update, Delete

Query for

matching

Trigger

Session

Feeder
Query

reply

Surachai Chitpinityon, Surasak Sanguanpong, Supaporn Erjongmanee, and Kasom

Koht-Arsa

83

and compared to the in-memory database. An inspection of the “HTTP

GET” keyword helps cover all HTTP packets regardless the port numbers

used in the request.

A URL query operation is regarded as a binary tree search operation. A

result from a query either returns a true or false answer depending on

whether or not a URL match is found. Neither a false positive nor a false

negative answer is allowed in our query operation. For each matching URL,

the URL Analyzer activates the Session Controller to start a filtering

mechanism.

3.3 Session Controller

Technically, a client-server-based HTTP connection will be completely

terminated when the client receives a TCP FIN (Finish) packet from the

server and the server receives a TCP RST (Reset) packet from the client.

The Session Controller performs this operation by sending a forged FIN and

a forged RST packet with a corresponding sequence number to the client

and the server, respectively. This technique is widely known as Session

Hijacking
17

. Section 4 presents the design and analysis of the Session

Hijacking technique.

3.4 Communicator

The Communicator acts as an interface for incoming and outgoing

traffic by receiving packets from network interfaces and forwarding them to

the URL Analyzer and Session Controller. It also passes forged FIN and

RST packets to terminate HTTP connections.

4. SESSION HIJACKING

Session Hijacking is widely known as a man-in-the-middle (MITM)

attack method. In this method, a third-party intercepts communication

sessions and pretends to be one of the parties involved in the session. URL

filtering needs to recognize every HTTP session by computing the TCP

sequence numbers in each session.

4.1 Session Timing Analysis

Session Timing Analysis shows the timing diagrams of URL inspection

and packet injections based on the Session Hijacking technique, as

described in the following steps:

 International Journal of Electronic Commerce Studies 84

(1) After completing 3-way handshake, the client sends a URL request to

the web server at t0.

(2) URL filtering captures this request at t1.

(3) URL filtering analyzes and matches the requested URL and tells the

Session Controller to compute the corresponding sequence number.

The Session Controller injects one FIN and one RST packet at t2.

(4) The FIN packet reaches the client at t3. The RST packet may reach the

web server at a time later than the server’s reply packet.

(5) The HTTP reply packet from the web server reaches the client at t4, and

the client responds with an RST packet back at t5.

As shown in Figure 3, the web server receives two RST packets – the

forged one from URL filtering and another one from the client. Both packets

perform the same functionality, which is to terminate the connection on the

web server. Technically, URL filtering does not need to send the RST

packet. However, sending it at the earliest possible time may prohibit the

server from replying with HTTP data back to the client to save bandwidth.

Figure 3. Session Hijacking timing diagram

t0

Filtering ServerClient

t1

t2

t3

t4

t5

Surachai Chitpinityon, Surasak Sanguanpong, Supaporn Erjongmanee, and Kasom

Koht-Arsa

85

4.2 Successful Filtering Conditions

As described in the previous section, a forged FIN and a forged RST

packet are injected with the correct sequence number. The forged FIN

packet forces the client to ignore all subsequent packets belonging to the

current session, while the forged RST packet is aimed at stopping the server

from relaying data to the client. To achieve successful filtering, the forged

FIN packet must reach the client at t3 before the server’s HTTP reply packet

reaches the client at t4. This condition can be expressed by the following

inequality:

t3 < t4 (1)

Note that the length of time starting from sending an HTTP request

packet at t0 until the reply HTTP packet reaches the client at t4 is called the

Round-Trip Time (RTT). To represent the inequality of (1) in terms of RTT,

we add t0 to the inequality:

t3 –t0 < t4–t0 (2)

Where Ti = ti –ti-1, the t3–t0 interval is obviously the summation of

T1, T2, and T3; hence, we can rewrite inequality (2) as follows:

 T1+T2+T3 < t4–t0 (3)

The T1+T3 is the RTT from the client to URL filtering (RTTCF) and

T2 is the URL processing time (TPROC). In addition, t4–t0 is the RTT from

the client to the server (RTTCS). Thus, inequality (3) can be rewritten as:

TPROC + RTTCF < RTTCS (4)

We will show in Section 6 that TPROC is approximately only 1% of

RTTCF, and it can be neglected. Therefore, RTTCS is always larger than

RTTCF, and a successful filtering condition is guaranteed.

 International Journal of Electronic Commerce Studies 86

5. URL DATA STRUCTURES

This section describes how to represent URLs with an AVL tree.

Firstly, we introduce a basic node representation and the overall tree

structure. Then, we show the space and time spent in URL processing.

5.1 Node Representation

We adopt the AVL tree implementation
18

 to represent URLs with

incremental encoding
19

 for URL compression. Figure 4 illustrates a node

structure for storing a URL. Each node contains the following five fields:

 RefID: Unique URL identifier referenced to its predecessor. The RefID

will be incremented by one for each newly created node.

 cPrefix: Number of common prefix characters referenced with its

predecessor.

 DiffURL: Uncommon tail URL string terminated with a null string.

 Lchild: Pointer to the left sub-tree.

 Rchild: Pointer to the right sub-tree.

Figure 4. Representation of a URL as a node in an AVL Tree

The URL string will be encoded using the differences between

successive data. A node is created and a URL is compressed through the

following steps:

(1) The first incoming URL is assigned to be the root node. The DiffURL

contains the complete URL string. The cPrefix is set to zero and the

rest of the fields are set to null.

(2) The next URL will be compared with every node on the path starting

from the root node and its predecessors to find the common prefix. The

RefID of a newly added node will point to its predecessor. The cPrefix

is set to the number of common characters and the remaining URL

string is stored in the DiffURL.

(3) The Lchild or Rchild in the predecessor node is updated, depending on

the branch of the sub-tree.

(4) Repeat step 2 until no URL remains.

RefID cPrefix DiffURL Lchild Rchild

32 bits 8 bits Variable terminated with null string 32 bits 32 bits

Surachai Chitpinityon, Surasak Sanguanpong, Supaporn Erjongmanee, and Kasom

Koht-Arsa

87

Figure 5 shows an example representing four listed URLs. Searching

(reading) a URL is available for both exact matching and prefix matching

using standard tree traversal methods. Although additional encoding

algorithms, such as Huffman, can be applied to strings in DiffURL to get a

higher compression ratio, such algorithms will significantly decrease the

search performance and should be avoided.

Figure 5. An example of URL representation using AVL tree

5.2 Tree Representation

An AVL tree is represented by three arrays, as shown in Figure 6. The

first array, TreeNode, contains a list of nodes in the AVL tree. It contains

Lchild, Rchild, and their corresponding tree heights. All URL nodes are

stored continuously using the CompressedURL array. Direct access to each

URL node is referenced by the DataPtr array.

Note that each entry in CompressedURL is a slightly modified version

of a URL node. The 32-bit Lchild and 32-bit Rchild (as shown in Figure 4)

have been relocated from CompressedURL into TreeNode. Two nibbles,

one from Lchild and one from Rchild, are borrowed to keep the tree height

for re-balancing the rotation operation. Thus, the length of Lchild and

Rchild are reduced from 32-bit to 28-bit pointers. The maximum number of

URLs is equal to 2
28

, or approximately 268 million URLs. This database

size is practically sufficient for deployment to large-scale ISPs.

The reason behind this modification is to enhance memory usage and

code optimization. Generally, a compiler efficiently optimizes code if the

data is aligned in 2
N
 byte boundary. Moreover, TreeNode and DataPtr

arrays can be viewed as a single array. This allows a URL string query via

the TreeNode array to act as a regular searching tree and gives direct access

null 0 www.sun.net/ 1 2

ID=0, www.sun.net/

ID=1, www.sen.net/

ID=2, www.sun.net/news/

ID=3, www.sun.net/news/blog/

Four URLs to be added:

ID=0, Add www.sun.net/

ID=1, Add www.sen.net/

ID=2, Add www.sun.net/news/

ID=3, Add www.sun.net/news/blog/

null 0 www.sun.net/ null null

ID=0, www.sun.net/

Step 1: ID=0, Add www.sun.net/

Step 4: ID=3, Add www.sun.net/news/blog/

0 5 en.net/ null null 0 12 news/ null 3

2 17 blog/ null null

(Omitted Step 2 and 3)

 International Journal of Electronic Commerce Studies 88

to a node by a given URL ID through the DataPtr array.

Figure 6. Global structure for URL representation

5.3 URL Storing

With incremental encoding as described in Section 5.1, a node at level

L will store only non-common suffix strings compared to the previous node

at level L-1. The total memory bytes required to store compressed URLs,

Surl,, can be computed by summation of the non-duplicated characters from

all nodes in the tree and can be expressed as follows:

 (5)

where:

 Yij is the number of characters at node j and position I;

 m is the number of URL characters at node j;

 n is the number of total URL database;

 d is the number of non-common suffix character stored in a node and

 ; and

 C is a constant represented all overhead of URL representation.
We ran an experiment on 10 million URLs. The average URL length

before compression was equal to 67.49 bytes. The average URL length after

compression, including all the overhead, was reduced to be 35.54 bytes.

This yields a 52.65% compression ratio. Based on this ratio, compressing a

Surachai Chitpinityon, Surasak Sanguanpong, Supaporn Erjongmanee, and Kasom

Koht-Arsa

89

total of 268 million URLs requires approximately 9 GB of memory space.

5.4 URL Matching

Based on URL representation in the AVL tree, the search operation is

performed with O (log n) time complexity, where n is the number of nodes

in the tree. Each URL matching process requires a character comparison

while traversing each node of the tree. The computation time, Tmatch, for

URL matching can be expressed as follows:

 (6)

where:

Xij is the matching time for each character of a requested URL with the

URL string at node j, and i is the compared character position;

m is the length of URL string at node j; and

n is the number of total URLs in the database.

6. PERFORMANCE MEASUREMENTS

We conducted two experiments to measure system performance. The

first experiment measured URL processing time and compression

throughput. The second experiment tested the filtering performance at 100

Gb/s synthetic traffic modified from real traffic.

6.1 The Testbed

The testbed was composed of five traffic generators and one filtering

engine. Each generator was a DELL R230 server equipped with a Xeon

E3-1220v5 4-core CPU running at 3.00 GHz and a dual-port 10 GbE

Myricom NIC. A total of 10 ports of 10 Gb/s each generated the total 100

Gb/s of traffic. The filtering engine was a DELL R620 server equipped with

dual Xeon E5-2643v2 6-core CPUs running at 3.5 GHz (total 12 CPU cores

and hyper-threading off), 64 Gigabyte of total memory, and five dual-port

10 GbE Myricom NICs. The Sniffer10G was used as the packet processing

driver in the filtering engine. The system ran on CentOS 6.5 Linux with

kernel 2.6.32. Each CPU core was assigned to receive a 10 Gb/s traffic

stream. The URL database contained 10 million URLs generated from a

blacklist database (http://urlblacklist.com) combined with our own blacklist.

The traffic generators and URL filtering were connected back-to-back

http://urlblacklist.com/

 International Journal of Electronic Commerce Studies 90

with fiber-optic cables as shown in Figure 7. Each traffic generator used the

tcpreplay tool to replay its own pcap-based traffic repository captured from

a university campus network. Each repository contains one million packets

with a total 651 MB in size.

Figure 7. The testbed for 100 Gb/s URL filtering

6.2 Basic URL Processing Performance

We measured the time to create and search one URL from one to 10

million entries. In addition, we measured the compression throughput in

terms of Mbps. The measurements were conducted on the filtering engine

using a single core. Increased performance could also be achieved by

parallelization of these operations.

Storing a URL is a procedure that creates a node and stores it in a

compressed form in the AVL tree. Figure 8(a) shows the distribution of time

needed to create the AVL tree until it completely contains 10 million URLs.

It takes 4.95 µs on average to store one URL (Min = 1 µs, Max = 98 µs).

Figure 8(b) shows the compression throughput as a function of the number

of URLs. The compression throughput decreases since processing time

grows with the tree size.

We tested the searching time by querying a URL entry by entry.

Figures 9(a) and 9(b) respectively show searching time using URL ID and

URL string. The search using URL ID runs very fast at 0.6 µs on average

(Min = 0.1 µs, Max = 35 µs). On the other hand, searching with URL string

(matching) requires more processing time. On average, the matching time

(TMatch) is equal to 3.83 µs (Min = 1 µs, Max = 43 µs).

Referring to the inequality (4), we can express the processing time,

URL Filtering
Engine

Packet Generator 1

Packet Generator 2

Packet Generator 3

2x10Gbps

2x10Gbps

2x10Gbps

Packet Generator 4

Packet Generator 5

2x10Gbps

2x10Gbps

Surachai Chitpinityon, Surasak Sanguanpong, Supaporn Erjongmanee, and Kasom

Koht-Arsa

91

TPROC, as:

 TPROC = TMatch + TFIN-RST (7)

The TFIN-RST is the time that the filtering engine spends to generate a

FIN and an RST packet. From the measurement, TFIN-RST is less than 1 µs,

which is relatively smaller than the averaged TMatch. Therefore, successful

filtering mainly depends on TMatch., i.e., performance of the URL matching

mechanism.

Figure 8. URL processing performance: (a) URL creation time and (b) URL

compression throughput

Figure 9. Search performance using (a) URL ID and (b) URL string

6.3 Filtering Performance

We measured the filtering performance in terms of (1) CPU utilization

and (2) Filtering throughput as a function of the number of URLs. Each

measurement was conducted with a 100 Gb/s traffic rate for two cases: (1)

 International Journal of Electronic Commerce Studies 92

Mixed traffic (MixT) and (2) HTTP-only traffic (HoT). In MixT, the pcap

repository contained mixed traffic. In HoT, all non-HTTP traffic was filtered

out. Since a higher consecutive HTTP request rate was generated, HoT

creates a heavier load on the filtering engine than the MixT does.

Figure 10(a) shows that the filtering engine can sustain 100 Gb/s

bandwidth for both MixT and HoT. In MixT, the system reached 70% of

CPU utilization. In HoT, the system consumed 5-15% more CPU utilization.

Figure 10(b) shows the throughput test in terms of packets per second.

The graph shows a flat line, since the throughput mainly depends on the

traffic rate regardless of the number of URLs. Both MixT and HoT can

sustain throughput at 31.1 Mpps and 33.58 Mpps, respectively. HoT gives

slightly better packet throughput than MixT, since non-HTTP packets with

large payloads were previously filtered out.

Figure 10. Filtering performance at 100 Gb/s: (a) CPU utilization and (b)

Filtering throughput

To further investigate the filtering performance against the traffic rate,

we measured CPU utilization as a function of the traffic rate ranging from 1

to 100 Gb/s for both the MixT and HoT cases. As shown in Figure 11(a),

CPU utilization linearly increased up to 70% (MixT) and 85% (HoT) for

100 Gb/s.

We collected real RTT statistics between clients and servers from the

university campus network. The RTT of 15,000 web servers were recorded

and the first 1,500 servers were selected because the remaining values have

a very large RTT, and they can be neglected. Figure 11(b) shows the

ascendingly sorted RTTCS, ranging between 12.15 and 200.57 ms (Maximum

900 ms is found when total 15,000 servers are considered). The result

confirms our assumption described in inequality (4) that the RTTCS is much

larger than TPROC+ RTTCF.

Surachai Chitpinityon, Surasak Sanguanpong, Supaporn Erjongmanee, and Kasom

Koht-Arsa

93

Figure 11. (a) CPU utilization as a function of bandwidth and (b) RTT

between clients and servers

7. CONCLUSION

We proposed a compact URL representation scheme with fast URL

matching. The outcome was a software-based URL filtering system that

supports a 100 Gb/s data rate using an industry standard COTS server with

multi-core processors. The design requirements must meet the following

criteria : (1) Low latency, (2) Configurability, and (3) Economical cost. The

proposed URL filtering method is transparent to clients using a

non-blocking method and has zero latency. The system can handle up to 286

million URLs with flexible configurability. Nowadays, a standard 10 GbE

NIC costs less than $500. Using high-end Intel Xeon-based COTS

hardware, a 100 Gb/s URL filtering system can be built for less than

$15,000. In the future, we are planning to implement the system with a

single 100 GbE NIC and use the DPDK framework
8
 as a packet processing

core instead of using Sniffer10G.

Our system is designed to handle unencrypted HTTP traffic. Filtering

encrypted traffic requires using a pass-through architecture and installing

trusted certificates on the client side. This method has not been commonly

deployed in public ISPs, except in small or enterprise networks. Moreover, a

new transport service like Quick UDP Internet Connections (QUIC,

pronounced ‘quick’)
20

 to speed up HTTP requests using UDP instead of TCP

was recently proposed. QUIC is a UDP-based secure and reliable transport

for HTTP/2.0. The Session Hijacking technique under the pass-by

architecture will not work under QUIC, and the only other choice would be

to implement a pass-through technique to handle QUIC; otherwise, ISPs

must disable QUIC at their gateways and fallback to TCP-based HTTP

requests.

 International Journal of Electronic Commerce Studies 94

8. REFERENCES
[1] J. Zittrain, and J. Palfrey, Internet filtering: The Politics and

Mechanisms of Control. In J. G. Deibert et al. (Eds.), The practice and

policy of global internet filtering (p26-56). Cambridge MA: MIT Press,

2008.

[2] M.T. Banday, and N.A. Shah, A concise study of web filtering. AIS

Electronic Library (AISeL), 10(31), 2010. Retrieved on January 15,

2016, from http://aisel.aisnet.org/sprouts_all/352/.

[3] A. Goodney, S. Narayan, V. Bhandwalkar, and Y.H. Cho, Pattern based

packet filtering using NetFPGA in DETER Infrastructure. Paper

presented at the
1st

 Asia NetFPGA Developers Workshop, Korea, June

14, 2010.

[4] J. Garnica, S. Lopez-Buedo, V. Lopez, J. Aracil, and J.M.G. Hidalgo, A

FPGA-based scalable architecture for URL legal filtering in 100GbE

Networks. Paper presented at the International Conference on

Reconfigurable Computing and FPGAs, Mexico, December 5-7, 2012.

[5] H. Chen, R. Liu, Y. Chang, Y. Huang, P. Wu, A. Yeh, and N. Huang,

The design and implementation of network-processor based gigabit

web filtering system. Paper presented at the Taiwan Area Network

Conference (TANET2002), Hsin-Chu, Taiwan, October 30, 2002.

[6] L. Deri, M. Martinelli, and A. Cardigliano, Realtime high-speed

network traffic monitoring using ntopng. In N.F. Velasquez (Ed.),

Proceedings of the 28
th

 USENIX Conference on Large Installation

System Administration Conference (LISA14) (p69-79), Seattle,

Washington: The Advanced Computing Systems Association, 2014.

[7] L. Rizzo, Netmap: A novel framework for fast packet I/O. Paper

presented at the 2012 USENIX Annual Technical Conference (USENIX

ATC12), Boston, Massachusetts, June 13-15, 2012.

[8] DPDK, Data plane development kit for fast packet processing.

Retrieved on January 10, 2016, from http://dpdk.org/.

[9] Openonload, The high performance network stack. Retrieved on

January 10, 2016, from http://www.openonload.org/.

[10] Sniffer10G, Complete packet capture in a cost-effective package.

Retrieved on January 10, 2016, from

http://www.cspi.com/ethernet-adapters/ software/sniffer10g/.

[11] H. Yuan, B. Wun, and P. Crowley, Software-based implementations of

updateable data structures for high-speed URL matching. Paper

presented at the 6
th

 ACM/IEEE Symposium on Architectures for

Networking and Communications Systems (ANCS), La Jolla,

California, October 25-26, 2010.

[12] Z. Zhou, T. Song, and Y. Jia, A high-performance URL lookup engine

for URL filtering systems. Paper presented at the IEEE International

http://www.openonload.org/

Surachai Chitpinityon, Surasak Sanguanpong, Supaporn Erjongmanee, and Kasom

Koht-Arsa

95

Conference on Communications (ICC), Cape Town, May 23-27, 2010.

[13] R. Enbody, and H. Du, Dynamic hashing schemes. ACM Computing

Surveys, 20(2), p850-113, 1988.
http://dx.doi.org/10.1145/46157.330532.

[14] A. Breslow, D. Zhang, J. Greathouse, N. Jayasena, and D. Tullsen,

Horton tables: Fast hash tables for in-memory data-intensive

computing. Paper presented at the 2016 USENIX Annual Technical

Conference (USENIX ATC16), Denver, Colorado, June 22-24, 2016.

[15] T. Zink, and M. Waldvogel, Efficient hash tables for network

applications. SpringerPlus, 4(1), p1-19, 2015.
http://dx.doi.org/10.1186/s40064-015-0958-y.

[16] R. Sedgewick, and K. Wayne, Algorithms 4
th

 edition. Boston:

Addison-Wesley Publishing, 2011.

[17] Z. Qian, Z. Mao, and Y. Xie, Collaborative TCP sequence number

inference attack- how to crack sequence number under a second. In G.

Danezis (Ed.), Proceedings of the ACM conference on Computer and

Communications Security (p593-604). North Carolina: Association for

Computing Machinery, 2012.

[18] K. Koht-Arsa. High performance clustered-based web spider. Master’s

Thesis, Department of Computer Engineering, Faculty of Engineering,

Kasetsart University, 2003.

[19] P. Ferragina, and G. Manzini, Indexing compressed text. Journal of the

ACM, 52(4), p552-581, 2005.

[20] R. Lychev, S. Jero, A. Boldyreva, and C. Nita-Rotaru, How secure and

quick is QUIC? Provable security and performance analyses. Paper

presented at the IEEE Symposium on Security and Privacy, San Jose,

May 17-21, 2015. http://dx.doi.org/10.1109/SP.2015.21.

 International Journal of Electronic Commerce Studies 96

